Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サンタコンペの話をさくっと
Search
nagiss
October 24, 2025
Technology
0
4
サンタコンペの話をさくっと
2025/2/6のDeNA/Go AI技術共有会の発表資料です。
nagiss
October 24, 2025
Tweet
Share
More Decks by nagiss
See All by nagiss
Fujitsuの量子化技術を完全理解する
nagiss
0
28
F0推定の手法を色々試してみる
nagiss
1
1.1k
音信号の電子透かし
nagiss
0
560
F0推定アルゴリズムHarvestは中で何をしているのか
nagiss
3
1.6k
ヒューリスティックコンテストで機械学習しよう
nagiss
10
6k
XNNPACKを直接使ってみた
nagiss
0
780
SantaとAHCと遺伝的アルゴリズム
nagiss
8
4.1k
Kaggleシミュレーションコンペの動向
nagiss
2
1.3k
Other Decks in Technology
See All in Technology
AIと自動化がもたらす業務効率化の実例: 反社チェック等の調査・業務プロセス自動化
enpipi
0
420
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
8
1.2k
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
お試しで oxlint を導入してみる #vuefes_aftertalk
bengo4com
2
1.5k
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
1
690
Design and implementation of "Markdown to Google Slides" / phpconfuk 2025
k1low
1
400
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
560
AI × クラウドで シイタケの収穫時期を判定してみた
lamaglama39
0
170
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
4
2.5k
Flutterコントリビューションのススメ
d_r_1009
1
380
明日から真似してOk!NOT A HOTELで実践している入社手続きの自動化
nkajihara
1
500
「O(n log(n))のパフォーマンス」の意味がわかるようになろう
dhirabayashi
0
140
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.9k
Balancing Empowerment & Direction
lara
5
740
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Rails Girls Zürich Keynote
gr2m
95
14k
It's Worth the Effort
3n
187
28k
Fireside Chat
paigeccino
41
3.7k
Music & Morning Musume
bryan
46
6.9k
Optimizing for Happiness
mojombo
379
70k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Thoughts on Productivity
jonyablonski
73
4.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Transcript
AI 2025.02.06 nagiss 株式会社ディー・エヌ・エー サンタコンペの話を さくっと
AI 2 ▪ 自己紹介: サンタコンペに現れる人 ▪ 今回優勝したのでその話をします 初めに コンペの名前で韻を踏んでたことに初めて気づいた というか今年の名前去年とほぼ同じじゃないか
AI 3 ▪ 毎年恒例の最適化系 Kaggle コンペ ▪ 今年は参加チーム数 1514 と
(謎の) 大盛り上がり ▪ 金メダルが 13 チームになったのは 2019 年以来 ▪ (メダル確定後時点で) 金圏に GM が 14 人いる、良コンペかな? サンタコンペ
AI 4 ▪ 概要 ▪ 与えられた単語列を並び替えて Gemma 2 9B で計算した
Perplexity を最小化してください ▪ Gemma が一番出力しそうな文を作れと言ってるのに近い ▪ 問題数 (単語列の種類) は 6 ▪ それぞれの Perplexity の平均が LB スコア ▪ 単語数はそれぞれ 10, 20, 20, 30, 50, 100 サンタコンペ今年のお題 ID0 ID5
AI 5 ▪ 特徴 ▪ 9B model x 16bit float
= 18GB の VRAM をロードだけで消費 ▪ 24GB 程度以上の GPU を使えないと土俵に上がれない ▪ スコア計算が重すぎる ▪ A100 使って 1 秒に (確か) 50 回くらいしか計算できない ▪ GPU 資源多く使える人は有利 ▪ C++ などの高速な言語を使う必要がない ▪ スコア計算がブラックボックスに近い ▪ 差分計算のような高速化テクニックを使う余地が少ない ▪ 解法の工夫の余地が限られる ▪ ある意味初心者向け サンタコンペ今年のお題
AI 6 ▪ ID0 ▪ 長さ 10 の解は 10! =
3628800 通りしかないので総当たりで最 適解が求まる ▪ ID0 以外 ▪ 総当たりは無理 ▪ ID5 は長さ 100 なので 100! = 93326215443944152681699238856266 7004907159682643816214685929638952175999932299156089414 6397615651828625369792082722375825118521091686400000000 0000000000000000 通りの解がある (本当は重複した単語があるのでもう少し少ない) ▪ 単語順が似ていればスコアも近いこと (近接最適性) を利用して、 スコア計算の対象を効率的に選択する 基本的な解法 (一般的な最適化の話)
AI 7 ▪ ID0 以外 ▪ 単語順が似ていればスコアも近いこと (近接最適性) を利用して、 スコア計算の対象を効率的に選択する
▪ 例 (山登り法): 既知の最良の解から単語 1 つを別の箇所に移動させて、 スコアが良くなれば既知の最良の解を更新、これを繰り返す ▪ ただし、これだけでは簡単に局所解に嵌ってスコアを改善できなくなる 基本的な解法 (一般的な最適化の話)
AI 8 ▪ さっきの山登り法を 3 段階くらい強化する ▪ 強化 1: Kick
を導入する (反復局所探索法にする) ▪ 局所解に嵌って単語の移動くらいでは改善できなくなった時に、強 制的に単語列をランダムに変更する ▪ 強化 2: 山登りで DFS を行う ▪ 単語移動させてスコアが改善しなかったけどほとんど悪化もしな かった場合に、さらにその単語列の周りも再帰的に調べる ▪ 強化 3: 有望な単語列を小さい NN で判別しフィルタリングする ▪ どう見てもその単語順では改善しないだろ、というのを小さい NN で事前に予測し除外して Gemma に食わせる数を絞る 我々の解法 (本質的な部分の概要のみ)