Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
大規模データ分析を支えるインフラ系オープンソースソフトウェアの最新事情
Search
草薙昭彦
June 08, 2016
Technology
0
23
大規模データ分析を支えるインフラ系オープンソースソフトウェアの最新事情
みんなのPython勉強会#13
での発表資料です。
草薙昭彦
June 08, 2016
Tweet
Share
More Decks by 草薙昭彦
See All by 草薙昭彦
Mini Tokyo 3D × PLATEAU - 公共交通デジタルツインにリアルな風景を
nagix
1
250
API開発健全性 〜 持続可能で高品質なAPIのためのアプローチ 〜
nagix
2
260
サーバーレスAPIのパフォーマンステストとアプリの未来
nagix
5
3.8k
公共交通データとアプリ制作 - Mini Tokyo 3D の初期制作過程を振り返る
nagix
2
290
APIファースト、そしてTime To First Call削減への道筋
nagix
2
380
AIアシスタントの活用で品質の向上と開発ワークフローのスピードアップ
nagix
1
580
APIファースト、そしてTime To First Call削減への道筋
nagix
1
990
地理情報とAPIのトレンド
nagix
0
230
AIとAPIで開発を加速!Postman v11リリース
nagix
3
890
Other Decks in Technology
See All in Technology
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
220
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
6
620
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
200
Engineer Career Talk
lycorp_recruit_jp
0
150
複雑なState管理からの脱却
sansantech
PRO
1
140
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
110
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.6k
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
500
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
380
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
7
800
Featured
See All Featured
For a Future-Friendly Web
brad_frost
175
9.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
How STYLIGHT went responsive
nonsquared
95
5.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Designing for humans not robots
tammielis
250
25k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Transcript
大規模データ分析を支えるインフラ系 オープンソースソフトウェアの最新事情 草薙 昭彦 (@nagix) MapR Technologies
自己紹介 • 草薙 昭彦 (@nagix) • MapR Technologies データエンジニア NS-SHAFT
無料!
一般的な分析のデータフロー 収集 抽出 変換 加工 格納 集計 加工 生成 モデル
作成 可視化 レポート
一般人 収集 抽出 変換 加工 格納 集計 加工 生成 モデル
作成 可視化 レポート 手入力 Excel Excel Excel Excel
一般人 収集 抽出 変換 加工 格納 集計 加工 生成 モデル
作成 可視化 レポート 手入力 Excel Excel Excel Excel 実は専門家も
企業では 収集 抽出 変換 加工 格納 集計 加工 生成 モデル
作成 可視化 レポート 各部門 のRDB のCSV 出力 マスタと の結合 名寄せ 分析用 RDB SQL R SAS SPSS Excel Oracle DB2 MySQL PostgreSQL …
組織の規模が大きくなると • データボリューム – 大容量ストレージ・効率の良い格納フォーマット • 処理性能 – データ増や複数ユーザの同時アクセスに対応 • 信頼性・可用性 – ハードウェアのHA化・データの複製
• セキュリティ – 認証・アクセス制御・暗号化・監査
大企業では 収集 抽出 変換 加工 格納 集計 加工 モデル 作成
可視化 レポート ETL ツール RDB コネクタ ETL ツール データ ウェア ハウス SQL R SAS SPSS セルフ サービ スBI Teradata IBM Netezza HP VerLca AcLan Matrix InformaLca Data Stage Syncsort Talend QlikView Pentaho
ビッグデータって何でしたっけ • データボリューム – 従来のアーキテクチャでは処理格納できない量 • データの種類 – 非構造化(=スキーマが確定していない)データ • データの流入頻度 – 月次・日時バッチ投入から都度の投入へ
大規模なデータを扱う時に重要なこと • スケールアウト(水平スケーラビリティ) • CPUとストレージの距離(データローカリティ) サーバ ・・・ スケールアウト可能なアルゴリズム・データ格納方式 共有ストレージ (NAS/SAN)
サーバ レイテンシ の問題 スループット の問題 サーバ サーバ サーバ 内蔵 HDD /SSD 内蔵 HDD /SSD 内蔵 HDD /SSD CPU CPU CPU
大規模なデータを扱う時に重要なこと • Data Gravity(データの重力) Web App Data 分析 App Data
会計 App Data マーケ App Data 販売 App Data 販売 App Data 会計 App マーケ App
分析のROI • 最も重要なのはデータを増やしたとしてもそ れに見合うリターンが得られるかどうか – データが増えれば得られる価値は上がりそう・・ – 問題はコストをいかに抑えることができるか • コモディティハードウェアは必須! • スケールアウト分散処理ソフトウェアは必須!
• オープンソースソフトウェアは有力な選択肢
参考 • Google対Yahoo—インターネット戦争でどうしてここ まで差がついたのかを振り返る hZp://jp.techcrunch.com/2016/05/23/20160522why-google-beat-yahoo-in-the-war-for-the-internet/ – “NetAppハードウェアのコストはYahooの規模の拡大と同 じ速さで増大し、Yahooの利益の大きな部分に食い込むこ ととなった” –
“これに対して Googleは、規模を拡大し新サービスを追加 するときに起きるはずの問題を、それが起きる前に予期し、 効率的に対処できるようGoogle File Systemの開発に全力 を挙げた”
Hadoop ベース分析基盤(初期) 収集 抽出 変換 加工 格納 集計 加工 モデル作成
可視化 レポート ログ コレクタ RDB コネクタ Map Reduce Hive Pig HDFS Map Reduce Hive Pig Mahout セルフ サービ スBI
Hadoopって? サーバ サーバ サーバ サーバ サーバ サーバ
Hadoopって? サーバ Hadoop Distributed File System (HDFS) データをブロックに 分割して分散配置、 3つのレプリカ作成
Hadoopって? サーバ Hadoop Distributed File System (HDFS) 分割されたデータ をMap、Reduceと いう単位で並列分
散処理 MapReduce
Hadoopって? Hadoop Distributed File System (HDFS) MapReduce Hadoop コア
Hadoopって? Hadoop Distributed File System (HDFS) MapReduce Hive SQLクエリ エンジン
HBase NoSQL データベース Pig データ加工 フレームワーク Mahout 機械学習 Zoo Keeper 分散レポジトリ ・・・ MapReduce/HDFS を使いやすくする ための無数のプロ ジェクト
Hadoop ベース分析基盤(現在) 収集 抽出 変換 加工 格納 集計 加工 モデル作成
可視化 レポート ログ コレクタ RDB コネクタ Spark Hive Pig HDFS Spark SQL Dashbo ard NoteBo ok Apache Spark Apache Kylin Apache Drill Apache Impala Presto MLLib Oryx Apache Spark Apache Hive Apache Pig Apache Flume Fluentd Jupyter Apache Zeppelin Spark Notebook H2O
Sparkって? • (主に)MapReduce の置き換え – バッチだけでなくインタラクティブな処理も – メモリを最大限利用し、より効率よく Spark Spark SQL SQLクエリ
エンジン Spark Streaming ストリーム処理 MLlib 機械学習 GraphX グラフ処理 Spark R R on Spark HDFS またはその他のファイルシステム
トレンド:リアルタイム処理 • ビジネス側からの要件 – より早い変化の検知、決断、情報の提供 – 業務処理と分析処理は統合へ • データフロー、格納、処理それぞれに新しい アーキテクチャが必要 • 処理の2つのアプローチ
– バッチを極限まで細かくしていく(マイクロバッチ) – メッセージを1つ1つ処理していく
リアルタイム処理基盤 収集 抽出 変換 加工 格納 集計 加工 モデル作成 可視化
ログ コレクタ RDB コネクタ Spark Streami ng Kaka メッセー ジ キュー Spark Streami ng Dashbo ard Spark Streaming Apache Storm Apache Flink Apache APEX Apache Nifi StreamSets Apache Flume Fluentd ElasLcsearch /Kibana Grafana
ラムダアーキテクチャ • バッチ処理(Data at Rest)とリアルタイムストリー ム処理(Streaming Data)は組み合わせることで 価値が出る – 近似的な速報値をリアルタイム処理で得る
– 正確な集計や深い分析は履歴データを利用しバッチ 処理で得る • データを入口で複製し、用途に応じた最適な フォーマットで格納する – 例: 時間レンジの検索ならHBase、履歴集計なら Parquet
ラムダアーキテクチャ hZps://www.mapr.com/developercentral/lambda-architecture
ラムダアーキテクチャ 収集 抽出 変換 加工 格納 集計 加工 モデル作成 可視化
格納 抽出 変換 加工 集計 加工 モデル作成 バッチレイヤー スピードレイヤー Kaka HDFS
分析のタイプ • バッチ分析 – 蓄積された大量データから知見を得る • リアルタイム分析 – 流れてくるデータを対象にとりあえずの解を得る • インタラクティブ分析 – よくわからないものから鍵を見つけ方針を決める
Apache Arrow • カラム型インメモリ分析のデファクト標準を目 指す Apache プロジェクト • 多くのビッグデータ系Apacheプロジェクトで共 通のデータ構造を使うといいよね?
• データ構造、アルゴリズム、クロス言語バイン ディングを定義 • 最新のCPUの機能を活用した高速な分析
これは非効率性だわ・・・ • 各システムは独自の内部メモリ 形式を持つ • 70〜80%のCPUはシリアライズ・ デシリアライズに使われる • 似たような機能が複数のプロジェ クトで実装される
Thrin, Avro, Protobuf,…
• すべてのシステムは共通のメモリ 形式を持つ • システム間のやりとりにオーバー ヘッドがない • プロジェクト間で機能を共有できる (例: Parquet-to-Arrow
リーダー) ならばこうだ
カラム型フォーマット Row-oriented フォーマット (CSV, 従来のRDB, …) Column-oriented フォーマット (Parquet, ORC,
…)
Feather File Format • Apache ArrowをベースにしたRとPythonの Data Frameに適したディスク上のファイル フォーマット •
なんで今までこんな便利なものがなかったん だ!
PyhtonはUI言語から処理言語へ? hZp://www.slideshare.net/wesm/nextgeneraLon-python-big-data-tools-powered-by-apache-arrow
ありがとうございました