Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スタートアップで1人目QAエンジニアになった話 / Startup first QA
Search
nametake
April 19, 2022
Technology
3
1.4k
スタートアップで1人目QAエンジニアになった話 / Startup first QA
[JaSST nano vol.11](
https://jasst-nano.connpass.com/event/242312/
) の登壇資料です。
nametake
April 19, 2022
Tweet
Share
More Decks by nametake
See All by nametake
実例マッピングで要件のレビューサイクルを回してる話 / Example Mapping Review Cycle
nametake
1
1.4k
アルプ T-QAオンボーディング資料(2022年9月版) / Alp T-QA onboarding 2022-09
nametake
0
1.6k
定式化と自動化に取り組みますという話 / Work on formulation and automation
nametake
0
1k
QAエンジニアが実例マッピングを2ヶ月運用した話 / Example Mapping for 2 months
nametake
3
6.9k
1人目QAエンジニアよもやま話 / QA Test Talk Vol.1
nametake
4
720
アルプでのAgile Testing / Alp Agile Testing
nametake
1
2.4k
CFD-Editorというツールを作ってみた話 / Made CFD-Editor
nametake
1
380
テスト技法の話 / Testing techniques
nametake
5
4.8k
社内の品質管理 / In House QA
nametake
0
2.9k
Other Decks in Technology
See All in Technology
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.9k
20251102 WordCamp Kansai 2025
chiilog
0
340
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
0
230
GTC 2025 : 가속되고 있는 미래
inureyes
PRO
0
140
re:Inventに行くまでにやっておきたいこと
nagisa53
0
880
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
23
16k
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
510
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
300
実践マルチモーダル検索!
shibuiwilliam
2
490
知覚とデザイン
rinchoku
1
690
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
180
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
350
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Navigating Team Friction
lara
190
15k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The World Runs on Bad Software
bkeepers
PRO
72
11k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
Testing 201, or: Great Expectations
jmmastey
46
7.7k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Embracing the Ebb and Flow
colly
88
4.9k
Speed Design
sergeychernyshev
32
1.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
ελʔτΞοϓͰ 1ਓQAΤϯδχΞʹ ͳͬͨ @nametake
ࣗݾհ
Shogo Nameki @nametake @nametake1009
ܦྺ
20164݄ ߹ಉձࣾDMM.com ৽ଔೖࣾ
ج൫։ൃΛ͢Δ ιϑτΣΞ ΤϯδχΞ
201712݄ גࣜձࣾωΫετ ΧϨϯγʔʹస੶
ج൫։ൃΛ͢Δ ιϑτΣΞ ΤϯδχΞ
20192݄ Ξϧϓגࣜձࣾ స৬(ݱ৬)
ج൫։ൃͨ͠Γ
ը໘։ൃͨ͠Γ
Salesforceͷ ύοέʔδγεςϜ ։ൃͨ͠Γͯ͠
20221݄ 1ਓͷ QAΤϯδχΞ
ͦΕ·Ͱͣͬͱ ιϑτΣΞ ΤϯδχΞ
QAΤϯδχΞͱͯ͠ ৽ถ৽ถ
ͳͥQAΤϯδχΞ͕ ඞཁʹͳ͔ͬͨ
ͦΜͳQAΤϯδχΞ͕ 3ϲ݄ͰԿΛ͔ͬͨ
QAઐΛ ཱͯͨܦҢ
Ξϧϓגࣜձࣾ 2018ۀ
None
؆୯ͳαʔϏε ղઆ
None
None
None
None
ϓϩμΫτͷಛੑ
Χόʔ͢Δ ۀൣғ͕Ί
ٻͷαΠΫϧ͕ ͋ΔͨΊಋೖظ͕ؒ ͘ͳΓ͕ͪ
։ൃΞδϟΠϧత
։ൃਐΉ͠ ϦϦʔε͞ΕΔ
ಋೖاۀ૿͑ͨ ͜ͱͰΘΕํ ଟ༷Խ
։ൃʹؔΘΔ ਓ૿͑ͨ
None
ͪΖΜνʔϜͰ ςετ࡞ۀ͍ͯͨ͠
ͦ͜Λ͑ͨෆ۩߹
ػೳ։ൃͱςετͷ όϥϯε
։ൃͱผϥΠϯͰ ࣭ͷରࡦͷඞཁੑ
ͱ͍͏͜ͱͰ ࢲ͕QAΤϯδχΞʹ ͳΓ·ͨ͠
໋͞Ε͔ͯΒͷ ՝
Կ͔ͨΒखΛ ͚ͭͯྑ͍ͷ͔ Θ͔Βͳ͍
ྫ͑ख୳ΓͰ Կ͔͠Β Δ͔͠ແ͍
৭ʑͬͨ
ࠓͦͷ ͬͨ͜ͱΛൃද
ͬͨ͜ͱ ͦͷ1
QAɾςετͱ͍͏ ୯ޠͷҙຯͷཧ
QAɾςετ
͜ͷ୯ޠͷҙຯ͕ ͍2022
։ൃʹดͨ͡ จ຺ͰΘΕͯ ͊͞େม
ಛʹ౷߹ςετ
ίϛϡχέʔγϣϯ ʹ՝
͚ࣾʹ ͋Δఔݫີʹ ఆٛ͢Δඞཁੑ
·ͣطଘͷ ఆٛΛௐͨ
JSTQB FLͷ γϥόε
None
QAɾςετΛ ͦΕͧΕ͚ࣾʹ ఆٛ
QAͷఆٛ
࣭Ϛωδϝϯτ ؚΉશͯͷ׆ಈ
࣭ίϯτϩʔϧΛ ͢Δ׆ಈશͯ
QAਓͰͳ͘׆ಈ
NOT ςελʔ
ఆٛલ QA = ςετ ͷೝ͕ࣝڧ͔ͬͨ
ձࣾશମͰ࣭Λ ؾʹ͢Δͷͱ͍͏ ୯ޠʹҙ͚ࣝ
ςετͷఆٛ
ςετϨϕϧ ͱ ςετλΠϓ
None
֤Ϩϕϧͷ ڥք໘ͷఆٛ
ίʔυͰ݁͢Δ ֎෦ͷγεςϜͱଓ͢Δ
ओޠ͕γεςϜ ओޠ͕Ϣʔβʔ
Ϣʔεέʔε୯Ґ 13%୯Ґ
ࣾͰߦΘΕ͍ͯͨ ςετΛϚοϐϯά
None
None
ࠓ͍ͬͯΔ Ζ͏ͱ͍ͯ͠Δ ςετ͕ͲΕͳͷ͔ ѲͰ͖ΔΑ͏ʹ
Γͳ͍෦͕ ՄࢹԽ͞Εͨ
ఆٛͯ͠ Α͔ͬͨ͜ͱ
QA׆ಈͷ ىʹͳͬͨ
ࣾͷٞͷ ۭதઓ͕ݮͬͨ
ͬͨ͜ͱ ͦͷ2
γϑτϨϑτ
ϦϦʔεϑϩʔͷ վળ
վળલ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ຖिਫ༵ʹϦϦʔε
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ։ൃऴྃ ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ։ൃऴྃ
ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ͜ͷظؒͰ
γεςϜςετ ड͚ೖΕςετ ։ൃऴྃ ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ϦάϨογϣϯςετ
։ൃऴྃ ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ཌʑਫ༵ʹ
QSPEVDUJPOڥʹ ϦϦʔε ։ൃऴྃ ΤϯδχΞஅ
࠷ॳͷࠒ͜ΕͰ ेճ͍ͬͯͨ
։ൃػೳͷ ෳࡶԽ
1िؒͩͱ ςετͷ͕࣌ؒ Γͳ͍
ςετଆΛม͑Δ ྗֶ͕ಇ͍͍ͯͨ
վળޙ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ཌʑਫ༵ʹ
QSPEVDUJPOڥʹ ϦϦʔε ։ൃऴྃ ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ཌʑਫ༵ʹ
QSPEVDUJPOڥʹ ϦϦʔε ։ൃऴྃ ΤϯδχΞஅ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ։ൃνʔϜͰ ड͚ೖΕςετ·Ͱऴྃ ཌਫ༵ʹ TUBHJOHڥʹ
ϦϦʔε ཌʑਫ༵ʹ QSPEVDUJPOڥʹ ϦϦʔε
None
νʔϜ͝ͱʹEFWڥʹ ೖΔલʹड͚ೖΕςετ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ཌʑਫ༵ʹ
QSPEVDUJPOڥʹ ϦϦʔε ϦϦʔεલͷ֬ೝ ։ൃνʔϜͰ ड͚ೖΕςετ·Ͱऴྃ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ཌਫ༵ʹ TUBHJOHڥʹ ϦϦʔε ཌʑਫ༵ʹ
QSPEVDUJPOڥʹ ϦϦʔε ϦάϨογϣϯςετ ։ൃνʔϜͰ ड͚ೖΕςετ·Ͱऴྃ
featureϒϥϯνͷ ϚʔδʹPdMͷ ड͚ೖΕςετΛ ඞਢԽ
ࠓ·Ͱݸʑਓʹ ด͕ͪͩͬͨ͡ ςετͱ͍͏׆ಈ
νʔϜձࣾ୯Ґʹ ςετͷҙࣝΛ Ҿ্͖͛ͨ
͏1ͭ
CSͷํʑͷ ֬ೝڥͷมߋ
CSͷํʑ ຊ൪ϦϦʔεҎ߱ ৽ػೳͷ֬ೝΛ ͍ͯͨ͠
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ຊ൪ϦϦʔεޙʹ $4ࢹͰͷૢ࡞ ड͚ೖΕςετ·Ͱऴྃ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ड͚ೖΕςετ·Ͱऴྃ ͜ͷஈ֊͔Β৮ͬͯΒ͏͜ͱʹ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ड͚ೖΕςετ·Ͱऴྃ ݕূڥΛखલʹ͢Δ͜ͱͰ ػೳʹ৮ΕΒΕΔػձΛ૿͢
CSͷํʑʹ ෆ۩߹͓͔͍͠ ෦͕͋ͬͨΒ ڭ͑ͯ΄͍͠ͱ͓ئ͍
͓٬͞Μͷ ϢʔεέʔεΛ ཧղͨ͠CSͷํͷ ٖࣅత୳ࡧςετ
ׂͱ͙͢ʹ ޮՌ͕Ͱͨ
γϑτϨϑτͷ ߟ͑ํͰ2ͭϑϩʔͷ վળΛͬͨ݁Ռ
։ൃνʔϜʹݶΒͣ QAΛશମͷͷ ͱͯ͠ҙࣝΛ Ҿ্͖͛ΒΕͨ
ͬͨ͜ͱ ͦͷ3
ςετυΩϡϝϯτ ͷඋ
QAʹؔ͢ΔຊΛ ಡΉͱඞͣग़ͯ͘Δ ςετυΩϡϝϯτ
ςετυΩϡϝϯτ Λॻ͘͜ͱʹΑΔ ޮՌΘ͔Δ
WF։ൃલఏʹ ͳ͍ͬͯΔ ͷ͕ଟ͍
ΞδϟΠϧతͳ ಈ͖ͷνʔϜʹ ॏ͗͢Δ
υΩϡϝϯτԽ͢Δ Ըܙड͚͍ͨ
ΞϧϓʹPRD ϢʔεέʔεΛ ॻ͘จԽ͋Δ
υΩϡϝϯτʹ ߅ແ͍ͣ
Ըܙड͚ΒΕΔ͕ ෛ୲ʹͳΒͳ͍ ΪϦΪϦͷϥΠϯͷ ςϯϓϨʔτΛඋ
None
None
None
None
None
νʔϜ͝ͱʹEFWڥʹ ೖΔલʹड͚ೖΕςετ
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ։ൃνʔϜͰ ड͚ೖΕςετ·Ͱऴྃ ཌਫ༵ʹ TUBHJOHڥʹ
ϦϦʔε ཌʑਫ༵ʹ QSPEVDUJPOڥʹ ϦϦʔε
GFBUVSF EFWFMPQNFOU TUBHJOH QSPEVDUJPO ਫ༵ ਫ༵ ։ൃνʔϜͰ ड͚ೖΕςετ·Ͱऴྃ ཌਫ༵ʹ TUBHJOHڥʹ
ϦϦʔε ཌʑਫ༵ʹ QSPEVDUJPOڥʹ ϦϦʔε ͜ͷड͚ೖΕςετͷ ݅ʹͬͯΒ͍ͬͯΔ
PdMͱΤϯδχΞ ͲͪΒʹඞཁ͕ ͋Γͦ͏ͳΒ ॻ͍ͯΒ͍ͬͯΔ
֓Ͷධ
خ͔ͬͨ͜͠ͱ
ΤϯδχΞͱPdMͰ ٞ͠ͳ͕Β ػೳςετཁ݅Λ ॻ͍ͯςετ࣮ࢪ
νʔϜͰ݁ͯ͠ ճ͍ͬͯͨ
ͬͨ͜ͱ ͦͷ4
࠾༻ใͷཧ
໋͞Ε͔ͯΒ ͠Βͯ͘͠ݟ͑ͨ ՝
1ਓͩͱશવ εέʔϧ͠ͳ͍
QAʹؔ͢Δ ݟΓͳ͍
࠾༻ΛਐΊ͍ͨ
ʮQAืूʂʯ ͚ͩͰਓདྷͳ͍
࠾༻׆ಈͷલʹ ΞϧϓͰͲ͏͍͏ QAͷΩϟϦΞ͕ ੵΊΔ͔
։࢝ஈ֊Ͱ ϊʔώϯτ
JaSST 2022 Tokyo
None
͔ͳΓࢀߟʹ ͍ͯ͠Δ
ΞϧϓͷQAਓࡐͷ ݱঢ়ʹ͍ͭͯѲ
༻ޠͷڞ༗ʹΑΓ ࠾༻ʹݶΒͣ ͘͢͠ͳͬͨ
ྫ͑
ࠓTEతͳεΩϧ͕ ओମͳਓͷ࠾༻Λ ਐΊ͍͖͍ͯͨΑͶ
(՝͕͋ͬͨͱ͖) Πϯϓϩηεͳಈ͖͕ Γͯͳ͍ΑͶ
ืूཁ߲ߋ৽
ߋʹ͏ͪΐͬͱ ৄࡉͳܗ͕ ݟ͖͑ͯͨͷͰ मਖ਼த
ͬͨ͜ͱ ͦͷ5
ςετࣗಈԽͷ खஈΛՃ
PDFͷ༰ςετ Ξοϓϩʔυͷ ςετͷπʔϧΛ Ճ
։ൃνʔϜͰ ճ͖͠Εͳ͔ͬͨ ରࡦΛ࣮ࢪ
͜͜·Ͱ͕ ͖ͬͯͨ͜ͱ
ࠓޙͬͯ ͍͖͍ͨ͜ͱ
͍͖͍ͬͯͨ͜ͱ ͦͷ1
։ൃνʔϜͷ QAϓϩηεͷڧԽ
None
ड͚ೖΕςετ γεςϜςετ
౷߹ςετ ίϯϙʔωϯτςετ
ઐ͕͍ͳ͍
ػೳΛ࡞Δਓ͕ ओମͰςετΛ ͍ͬͯΔ
͜Εࣗମ ѱ͍͜ͱͰͳ͍
ࣗͨͪͰ ࡞͍ͬͯΔͨΊ ςετʹόΠΞε͕ ͔͔Δ
ςετͷ࿙Ε͕ ൃੜ͍ͯ͠Δ
νʔϜʹೖͬͯ ൷తࢥߟͰ ςετΛ͢Δ ਓ͕ඞཁ
ࢲ͚ͩͩͱ ࠾༻શମͷ͜ͱ͕ ϝΠϯʹͳ͍ͬͯͯ νʔϜʹೖΕͳ͍
։ൃνʔϜͱڞʹ QAΛ͍ͨ͠ਓͷ࠾༻
·ͨ
ࠓ·Ͱͷࣝܦݧ͔Β ඇ࿈ଓʹձࣾશମͷ QAεΩϧ্͕Ͱ͖Δ ਓͷ࠾༻
͍͖͍ͬͯͨ͜ͱ ͦͷ2
։ൃϓϩηεͱ ผ࣠Ͱͷ ࣗಈςετͷՃ
ػೳ։ൃதͷ ࣗಈςετҰఆ ։ൃνʔϜͰ ߦΘΕ͍ͯΔ
։ൃ୯Ґ֎ͷ ࣗಈςετ ࡞͍͖͍ͬͯͨ
։ൃνʔϜͷ ࣗಈԽͷΈͷ ࢧԉؚΉ
εϓϦοτͱ ίʔνҎ্ͳΠϝʔδ
Πϯϓϩηε νʔϜʹͤΔ
CSͷࢹΛͬͱ औΓೖΕ͍ͨͱ͔ ࢥͬͨΓ͍ͯ͠Δ
͍͖͍ͬͯͨ͜ͱ ͦͷ3
όάτϥοΩϯά
όάঢ়گΛੳ ग़དྷ͍ͯͳ͍
ఆྔతͳࢦඪ͕ ·ͩ࡞Ε͍ͯͳ͍
όάͷภࡏՕॴ ·ͩ·ͩײ֮ʹ པΔ෦͕ڧ͍
ײ͚֮ͩͰͳ͘ ࠜڌΛ࣋ͬͯςετ ͍͖͍ͯͨ͠
͓ΘΓʹ
·ͩ·ͩ׆ಈΛ εέʔϧ͢Δ ඞཁ͋Δ
ௐํ͕Θ͔Ε QAؔ࿈ͷݟ ৭Μͳॴʹ͋Δ
นଧͪ૬खʹͳͬͯ ͍ͨࣾ֎ͷํͷ ڠྗ͋ͬͨ
1ਓॳ৺ऀ QAΤϯδχΞͰ ͳΜͱ͔ਐΊΒΕͨ
ҰํͰձࣾ͝ͱͷ ͜͏͍͏ڥ۰ͷਓͷ ݟΛ৭ʑΓ͍ͨ ͱ͍͏ͷ͋ͬͨ
͜ͷൃද͕ ಉ͡Α͏ͳڥ۰ͷ ਓͷ1ͭͷ αϯϓϧʹͳΕ
͔͜͜Βఆܕจ
ΞϧϓגࣜձࣾͰ QAΤϯδχΞΛ ࠾༻தͰ͢
ϓϩμΫτࢤͰ શࣾతʹQAʹ औΓΊΔڥ
TwitterͰ MeetyͰؾܰʹ ͓͕͚͍ͩ͘͞