Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
疎行列と Jaccard 類似度の高速計算
Search
na-o-ys
March 29, 2017
Programming
1
650
疎行列と Jaccard 類似度の高速計算
na-o-ys
March 29, 2017
Tweet
Share
More Decks by na-o-ys
See All by na-o-ys
IoTと監視
naoys
1
800
RubyとJIT
naoys
0
170
将棋盤を画像認識したかった
naoys
0
1.6k
Rust で乗り換え案内
naoys
0
630
有理数集合の濃度
naoys
2
140
YARVの最適化について調べた
naoys
0
140
転職会議サービスのAWS移行記録
naoys
0
78
Anonymous Recursion in C++
naoys
0
430
入門AlphaGo
naoys
5
3.8k
Other Decks in Programming
See All in Programming
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
590
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
180
Basic Architectures
denyspoltorak
0
120
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
ゲームの物理 剛体編
fadis
0
370
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.7k
Cap'n Webについて
yusukebe
0
150
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
150
Deno Tunnel を使ってみた話
kamekyame
0
240
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
3.9k
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
130
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
120
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
38
Paper Plane
katiecoart
PRO
0
44k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Writing Fast Ruby
sferik
630
62k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Amusing Abliteration
ianozsvald
0
69
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Transcript
ૄߦྻ ͋Δ͍ Jaccard ྨࣅΛߴͰܭࢉ͢Δํ๏ @na_o_ys
Agenda 1. ૄߦྻͷσʔλߏ 2. Python ͱܭࢉ 3. Python ͱૄߦྻ 4.
Jaccard ྨࣅ
1. ૄߦྻͷσʔλߏ
ૄߦྻͱ ΄ͱΜͲͷཁૉ͕ 0 Ͱ͋Δߦྻ
1. ૄߦྻͷσʔλߏ (1) • ௨ৗͷߦྻ Array • ૄߦྻΛ Array Ͱѻ͏ͱϝϞϦԋࢉແବ
• 0 ϕΫτϧಉ࢜ͷࢉͱ͔໌Β͔ʹແବ
1. ૄߦྻͷσʔλߏ (2) • Compressed Sparse Row (CSR) • CSR
ಉ࢜ͷՃࢉ, ߦྻੵ͕ߴ • ߦϕΫτϧͷऔΓग़͕͠ߴ • ྻϕΫτϧͷऔΓग़͕͠ • (wikipedia)
2. Python ͱܭࢉ
2. Python ͱܭࢉ • ख़ͨ͠ܭࢉϥΠϒϥϦ • NumPy, SciPy • Scikit-learn
ͱ͜ΖͰɺPython ͍ (DEMO)
Python ͍ • 5000 ഒ ࣮ߦ࣌ؒ 1ZUIPO NT Ұ෦/VN1Z NT
શ෦/VN1Z NT
Python-loop is Evil • ߦྻϧʔϓઈରʹॻ͍͍͚ͯͳ͍ • 1 ඵͰऴΘΔͣͷॲཧʹ 2 ͔͔࣌ؒΔ
• ߦϧʔϓ/ྻϧʔϓॻ͔ͳ͍ํ͕ྑ͍ • 1 ඵͰऴΘΔͣͷॲཧʹ 1 ͔͔Δ
3. Python ͱૄߦྻ
3. Python ͱૄߦྻ • scipy.sparse.csr_matrix
ޮతͳߦྻॲཧ • ߦϕΫτϧͷऔΓग़͠ • Ճࢉࢉ, ߦྻੵ • ෦දݱΛ numpy.ndarray ͱͯ͠อ࣋
• औΓग़ͯ͠ૢ࡞Ͱ͖Δ (NumPy ͷੈք Ͱ)
4. Jaccard ྨࣅ
4. Jaccard ྨࣅ • ϕΫτϧಉ࢜ͷྨࣅ • ڠௐϑΟϧλϦϯάͱ͔Ͱ͏ • ϢʔβAͱϢʔβBͲΕ͘Β͍ࣅ͍ͯΔ͔ Jaccard(a,
b) = a・b / (a・a + b・b - a・b)
ࣄͰඞཁʹͳͬͨ͜ͱ • ૄߦྻͷߦϕΫτϧಉ࢜ͷ Jaccard ྨࣅΛ ܭࢉ͍ͨ͠
DEMO
·ͱΊ
·ͱΊ • Python ͍ • ϥΠϒϥϦΛ͏·͘͏ඞཁ͕͋Δ • ϒϩάΛॻ͍ͨ • http://na-o-ys.github.io/others/
2015-11-07-sparse-vector- similarities.html