Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
入門AlphaGo
Search
na-o-ys
April 22, 2016
Technology
5
3.8k
入門AlphaGo
"Mastering the game of Go with deep neural networks and tree search" の概要
na-o-ys
April 22, 2016
Tweet
Share
More Decks by na-o-ys
See All by na-o-ys
IoTと監視
naoys
1
800
RubyとJIT
naoys
0
170
将棋盤を画像認識したかった
naoys
0
1.6k
Rust で乗り換え案内
naoys
0
630
疎行列と Jaccard 類似度の高速計算
naoys
1
650
有理数集合の濃度
naoys
2
140
YARVの最適化について調べた
naoys
0
140
転職会議サービスのAWS移行記録
naoys
0
78
Anonymous Recursion in C++
naoys
0
430
Other Decks in Technology
See All in Technology
"人"が頑張るAI駆動開発
yokomachi
1
160
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
500
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.4k
Introduce marp-ai-slide-generator
itarutomy
0
120
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
Microsoft Agent Frameworkの可観測性
tomokusaba
1
110
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
250
AI との良い付き合い方を僕らは誰も知らない
asei
0
260
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
550
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
940
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
6
3.4k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
250
Featured
See All Featured
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
28
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
Everyday Curiosity
cassininazir
0
110
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
75
Designing for Timeless Needs
cassininazir
0
93
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
Transcript
ೖAlphaGo 0x64ޠ ୈ07 “AI” @na_o_ys
͝ҙ • จʹॻ͔Ε͍ͯͳ͍ಠࣗௐࠪਪଌؚ͕· Ε·͢ • Ұߟͩͱࢥͬͯݟ͍ͯͩ͘͞
AlphaGoͱ • ॳΊͯϓϩع࢜ΛഁͬͨғޟAI
ୈҰ෦: AlphaGoʹࢸΔ·Ͱ
શใήʔϜ • ΦηϩɺνΣεɺকعɺғޟɺetc • ϥϯμϜੑ͕ແ͘ɺ࠷ળख͕ଘࡏ͢Δ • (ݪཧతʹ) ઌखඞউɾޙखඞউɾҾ͖͚
ήʔϜ • શ୳ࡧͰ࠷ળख͕ٻ·Δ • ܭࢉྔతʹෆՄೳ … ݱہ໘ 1खޙ 2खޙ
ධՁؔ • ൫໘Λ༩͑ΔͱείΞ (༧উͳͲ) Λฦؔ͢ • কعνΣεͳΒɺۨͷଛಘޮ͖ͷΛݩʹܭࢉ • ήʔϜͷ୳ࡧൣғ(ਂ͞)ΛݶఆͰ͖Δ ݱہ໘
1खޙ 2खޙ ධՁˠ 0.1 0.8 0.3 0.4
ධՁؔͷ༗ޮੑ • ύϥϝʔλͷબఆɾઃఆ͕ΩϞ • ख࡞ۀ: νΣεͰਓؒΛ͑ͨ • ػցֶश: কعͰਓؒΛ͑ͨ •
ғޟෳࡶੑͷͨΊʹ·ͱͳධՁؔΛ࡞Εͳ͔ͬ ͨ
ݪ࢝ϞϯςΧϧϩ๏ • ϥϯμϜʹऴہ·Ͱଧͭ (ϩʔϧΞτ) Λ܁Γฦͯ͠ɺউΛܭ ࢉ͢Δํ๏ ϩʔϧΞτΛ܁Γฦͯ͠ উΛܭࢉ উ 7/10
উ 3/10
ϞϯςΧϧϩ୳ࡧ (MCTS) • ݪ࢝ϞϯςΧϧϩ๏ΛධՁؔతʹ͏ • n खઌͰϩʔϧΞτ • ༿ͷউΛܭࢉ ※͞Βʹ༿ͷউʹԠͯ͡ಈతʹࢬמΓɾల։͠ɺ୳ࡧਫ਼Λ্͛Δ
ϙϦγʔؔ • f (ہ໘, ࣍ͷҰख) • ࣍ͷҰखͷࣗવ͞Λ͋ΒΘ֬͢ີؔ • عේσʔλ͔Βͷֶश͕༰қ •
ϩʔϧΞτ࣌ʹ͑Δ • ϥϯμϜʹଧͭͷͰͳ͘ɺ·ͱͳखΛଧͨͤΔ • ͨͩ͠ߴʹಈ࡞͢Δඞཁ͕͋Δ
MCTSͷڧ͞ • ϙϦγʔؔͷͳͲͰΞϚνϡΞߴஈʹඖఢ͢Δڧ͞· Ͱਐา • ϓϩʹٴͳ͍ • େہ؍ʹ༏ΕΔ • ʮڱ͘ਂ͍ಡΈʯ͕ऑ͍
• खΛ͘ಡΉͨΊ
AlphaGo͕ͬͨ͜ͱ • جຊMCTS • ༷ʑͳ • CNN(ΈࠐΈχϡʔϥϧωοτϫʔΫ) • ڧԽֶश •
ධՁؔ • ฒྻࢄΞϧΰϦζϜ • MCTS ʹͦΕΒΛΈࠐΜͩ
ୈೋ෦: AlphaGo
2ͭͷϙϦγʔؔͱ 1ͭͷධՁؔ ϩʔϧΞτϙϦγʔ ϩʔϧΞτʹ͏ ߴɾਫ਼ 4-ϙϦγʔ ୳ࡧॱংΛܾΊΔ ɾߴਫ਼ ධՁؔ ༿ͷධՁ(উ)Λܭࢉ
ϩʔϧΞτʹΑΔউͱ͠߹ΘͤΔ
ϩʔϧΞτϙϦγʔ • ϩʔϧΞτ(ϥϯμϜϓϨΠ)ʹ͏ϙϦγʔؔ • ߴੑɹʼɹਫ਼ • ਓؒͷعේ800ສہ໘͔Βֶश • ઢܗιϑτϚοΫεؔ •
2ϚΠΫϩඵ (ߴ) • عේͱͷࢦ͠खҰக: 24.2%
SLϙϦγʔ • ͷ୳ࡧॱংΛܾΊΔϙϦγʔؔ • ਫ਼ɹʼɹߴੑ • ਓؒͷعේ3000ສہ໘͔Βֶश • 13CNN(ΈࠐΈχϡʔϥϧωοτϫʔΫ) •
ը૾ೝࣝͰΑ͘ΘΕΔ • : 3ϛϦඵ • عේͱͷࢦ͠खҰக: 57%
ධՁؔ • 14CNN • SLϙϦγʔΛڧԽֶशͨ͠ͷ (RLϙϦγʔ) Λݩʹɺճؼͯ͠࡞Δ 4-ϙϦγʔ 3-ϙϦγʔ ධՁؔ
1. ڧԽֶश 2. ϥϯμϜعේੜ (3000ສہ໘) 3. ճؼ
ධՁؔͷଊ͑ํ • ϩʔϧΞτʹΑΔউܭࢉΛิ͏ͷ • ୯ମͰͦ͜·Ͱڧ͘ͳ͍ • ධՁؔͷಛ (ߟ) • ʮڱ͘ਂ͍ಡΈʯʹڧ͍
• ʮRLϙϦγʔ(ڧԽֶश݁Ռ)Λऴہ·ͰଧͨͤͨࡍͷউʯͱՁ • େہ؍͕ແ͍ • Ұຊಓ͔͠ಡ·ͳ͍ .$54ͷಛੑ େہ؍ʹ༏Εͯʮਂ͍ಡΈʯ͕ऑ͍ ͱ ͏·͘ิ͍͍͋ͬͯΔ
ڧ͞ (2015/10࣌)
ڧ͞ (2016/3 ࣌) R3500+ ͷΠɾηυϧʹউ
ࢀߟ • Mastering the game of Go with deep neural
networks and tree search (http://www.nature.com/nature/journal/v529/n7587/full/ nature16961.html) • Google AlphaGoͷΈΛཧղ͢Δ | IT Leaders (http://it.impressbm.co.jp/articles/-/13474)
ऴΘΓ