Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
入門AlphaGo
Search
na-o-ys
April 22, 2016
Technology
5
3.8k
入門AlphaGo
"Mastering the game of Go with deep neural networks and tree search" の概要
na-o-ys
April 22, 2016
Tweet
Share
More Decks by na-o-ys
See All by na-o-ys
IoTと監視
naoys
1
790
RubyとJIT
naoys
0
160
将棋盤を画像認識したかった
naoys
0
1.5k
Rust で乗り換え案内
naoys
0
630
疎行列と Jaccard 類似度の高速計算
naoys
1
630
有理数集合の濃度
naoys
2
130
YARVの最適化について調べた
naoys
0
140
転職会議サービスのAWS移行記録
naoys
0
71
Anonymous Recursion in C++
naoys
0
420
Other Decks in Technology
See All in Technology
Create Ruby native extension gem with Go
sue445
0
130
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
210
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
1.1k
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
530
Apache Spark もくもく会
taka_aki
0
140
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
400
LLM時代のパフォーマンスチューニング:MongoDB運用で試したコンテキスト活用の工夫
ishikawa_pro
0
170
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
120
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
190
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.2k
はじめてのOSS開発からみえたGo言語の強み
shibukazu
3
980
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Agile that works and the tools we love
rasmusluckow
330
21k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Faster Mobile Websites
deanohume
309
31k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Facilitating Awesome Meetings
lara
55
6.5k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Transcript
ೖAlphaGo 0x64ޠ ୈ07 “AI” @na_o_ys
͝ҙ • จʹॻ͔Ε͍ͯͳ͍ಠࣗௐࠪਪଌؚ͕· Ε·͢ • Ұߟͩͱࢥͬͯݟ͍ͯͩ͘͞
AlphaGoͱ • ॳΊͯϓϩع࢜ΛഁͬͨғޟAI
ୈҰ෦: AlphaGoʹࢸΔ·Ͱ
શใήʔϜ • ΦηϩɺνΣεɺকعɺғޟɺetc • ϥϯμϜੑ͕ແ͘ɺ࠷ળख͕ଘࡏ͢Δ • (ݪཧతʹ) ઌखඞউɾޙखඞউɾҾ͖͚
ήʔϜ • શ୳ࡧͰ࠷ળख͕ٻ·Δ • ܭࢉྔతʹෆՄೳ … ݱہ໘ 1खޙ 2खޙ
ධՁؔ • ൫໘Λ༩͑ΔͱείΞ (༧উͳͲ) Λฦؔ͢ • কعνΣεͳΒɺۨͷଛಘޮ͖ͷΛݩʹܭࢉ • ήʔϜͷ୳ࡧൣғ(ਂ͞)ΛݶఆͰ͖Δ ݱہ໘
1खޙ 2खޙ ධՁˠ 0.1 0.8 0.3 0.4
ධՁؔͷ༗ޮੑ • ύϥϝʔλͷબఆɾઃఆ͕ΩϞ • ख࡞ۀ: νΣεͰਓؒΛ͑ͨ • ػցֶश: কعͰਓؒΛ͑ͨ •
ғޟෳࡶੑͷͨΊʹ·ͱͳධՁؔΛ࡞Εͳ͔ͬ ͨ
ݪ࢝ϞϯςΧϧϩ๏ • ϥϯμϜʹऴہ·Ͱଧͭ (ϩʔϧΞτ) Λ܁Γฦͯ͠ɺউΛܭ ࢉ͢Δํ๏ ϩʔϧΞτΛ܁Γฦͯ͠ উΛܭࢉ উ 7/10
উ 3/10
ϞϯςΧϧϩ୳ࡧ (MCTS) • ݪ࢝ϞϯςΧϧϩ๏ΛධՁؔతʹ͏ • n खઌͰϩʔϧΞτ • ༿ͷউΛܭࢉ ※͞Βʹ༿ͷউʹԠͯ͡ಈతʹࢬמΓɾల։͠ɺ୳ࡧਫ਼Λ্͛Δ
ϙϦγʔؔ • f (ہ໘, ࣍ͷҰख) • ࣍ͷҰखͷࣗવ͞Λ͋ΒΘ֬͢ີؔ • عේσʔλ͔Βͷֶश͕༰қ •
ϩʔϧΞτ࣌ʹ͑Δ • ϥϯμϜʹଧͭͷͰͳ͘ɺ·ͱͳखΛଧͨͤΔ • ͨͩ͠ߴʹಈ࡞͢Δඞཁ͕͋Δ
MCTSͷڧ͞ • ϙϦγʔؔͷͳͲͰΞϚνϡΞߴஈʹඖఢ͢Δڧ͞· Ͱਐา • ϓϩʹٴͳ͍ • େہ؍ʹ༏ΕΔ • ʮڱ͘ਂ͍ಡΈʯ͕ऑ͍
• खΛ͘ಡΉͨΊ
AlphaGo͕ͬͨ͜ͱ • جຊMCTS • ༷ʑͳ • CNN(ΈࠐΈχϡʔϥϧωοτϫʔΫ) • ڧԽֶश •
ධՁؔ • ฒྻࢄΞϧΰϦζϜ • MCTS ʹͦΕΒΛΈࠐΜͩ
ୈೋ෦: AlphaGo
2ͭͷϙϦγʔؔͱ 1ͭͷධՁؔ ϩʔϧΞτϙϦγʔ ϩʔϧΞτʹ͏ ߴɾਫ਼ 4-ϙϦγʔ ୳ࡧॱংΛܾΊΔ ɾߴਫ਼ ධՁؔ ༿ͷධՁ(উ)Λܭࢉ
ϩʔϧΞτʹΑΔউͱ͠߹ΘͤΔ
ϩʔϧΞτϙϦγʔ • ϩʔϧΞτ(ϥϯμϜϓϨΠ)ʹ͏ϙϦγʔؔ • ߴੑɹʼɹਫ਼ • ਓؒͷعේ800ສہ໘͔Βֶश • ઢܗιϑτϚοΫεؔ •
2ϚΠΫϩඵ (ߴ) • عේͱͷࢦ͠खҰக: 24.2%
SLϙϦγʔ • ͷ୳ࡧॱংΛܾΊΔϙϦγʔؔ • ਫ਼ɹʼɹߴੑ • ਓؒͷعේ3000ສہ໘͔Βֶश • 13CNN(ΈࠐΈχϡʔϥϧωοτϫʔΫ) •
ը૾ೝࣝͰΑ͘ΘΕΔ • : 3ϛϦඵ • عේͱͷࢦ͠खҰக: 57%
ධՁؔ • 14CNN • SLϙϦγʔΛڧԽֶशͨ͠ͷ (RLϙϦγʔ) Λݩʹɺճؼͯ͠࡞Δ 4-ϙϦγʔ 3-ϙϦγʔ ධՁؔ
1. ڧԽֶश 2. ϥϯμϜعේੜ (3000ສہ໘) 3. ճؼ
ධՁؔͷଊ͑ํ • ϩʔϧΞτʹΑΔউܭࢉΛิ͏ͷ • ୯ମͰͦ͜·Ͱڧ͘ͳ͍ • ධՁؔͷಛ (ߟ) • ʮڱ͘ਂ͍ಡΈʯʹڧ͍
• ʮRLϙϦγʔ(ڧԽֶश݁Ռ)Λऴہ·ͰଧͨͤͨࡍͷউʯͱՁ • େہ؍͕ແ͍ • Ұຊಓ͔͠ಡ·ͳ͍ .$54ͷಛੑ େہ؍ʹ༏Εͯʮਂ͍ಡΈʯ͕ऑ͍ ͱ ͏·͘ิ͍͍͋ͬͯΔ
ڧ͞ (2015/10࣌)
ڧ͞ (2016/3 ࣌) R3500+ ͷΠɾηυϧʹউ
ࢀߟ • Mastering the game of Go with deep neural
networks and tree search (http://www.nature.com/nature/journal/v529/n7587/full/ nature16961.html) • Google AlphaGoͷΈΛཧղ͢Δ | IT Leaders (http://it.impressbm.co.jp/articles/-/13474)
ऴΘΓ