Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
点過程によるモデリング
Search
NearMeの技術発表資料です
PRO
March 03, 2023
Research
0
530
点過程によるモデリング
NearMeの技術発表資料です
PRO
March 03, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ルートの質を評価する指標について
nearme_tech
PRO
0
13
Rustで作る強化学習エージェント
nearme_tech
PRO
0
43
ビームサーチ
nearme_tech
PRO
0
36
WASM入門
nearme_tech
PRO
0
37
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
26
リファクタリングのための第一歩
nearme_tech
PRO
0
69
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
200
確率的プログラミング入門
nearme_tech
PRO
2
120
Observability and OpenTelemetry
nearme_tech
PRO
2
46
Other Decks in Research
See All in Research
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
250
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
410
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.8k
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
480
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
570
Whoisの闇
hirachan
3
310
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
310
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
360
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
3
150
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
440
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
550
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
840
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
172
14k
Writing Fast Ruby
sferik
628
61k
How STYLIGHT went responsive
nonsquared
99
5.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
580
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Adopting Sorbet at Scale
ufuk
75
9.2k
It's Worth the Effort
3n
184
28k
A Tale of Four Properties
chriscoyier
158
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
115
51k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Transcript
0 点過程によるモデリング 2023-03-03 第34回NearMe技術勉強会 Futo Ueno
1 1 研究内容(学部) テーマ:均衡測度の数値計算 均衡測度とは? → 最適化問題 の解となる非負測度のこと. この問題は, 微分方程式
で記述される系の定常状態を求める問題において連続極限をとることで導かれる.
2 2 研究内容(学部) この問題は, 測度μに関する最適化問題 →そのまま解くのは難しい 密度関数ρを使って dμ(x)=ρ(x)dx と書けると仮定し, ある関数系
を用いてρを展開し, 近似することを考える: supp(ρ)=[a, b]とすると, 実はa, bに関する最適化問題(2変数)に帰着できる(詳細は略)
3 研究内容(大学院) テーマ:確率過程の統計解析 確率過程とは?・・・確率的に時間発展する対象を記述する数理モデル ・連続時間 例:ブラウン運動 ⊂ 拡散過程 ・離散時間 例:ランダムウォーク
⊂ マルコフ連鎖 連続時間の確率過程を考えるメリット: ・解析学的手法を適用できる→確率微分方程式など ・ のランダム性だけでなく, 観測時刻(例 : イベントの発生時刻) のランダム性も考慮したモデルを作れる
4 4 点過程 点過程:空間上にランダムに分布する「点」の集合に関する確率過程 →時系列解析の文脈では「点」は「イベントの発生」に対応している イベントの発生時刻 は確率変数として扱う →ある観測区間[0, T]に得られる は,
試行ごとに異なる →点過程は確率密度関数 によって特徴づけられる
5 5 ・ある1日の注文発生履歴
6 6 ポアソン過程 ポアソン過程:それぞれのイベントが互いに独立に発生することを仮定したモデル 微小な区間[t, t+dt]にイベントが発生する確率を P(event in [t, t+dt])=λ(t)dt
で与える ここで, λ(t)は強度関数で, 時刻tにおけるイベントの発生のしやすさを表す. ・定常ポアソン過程:λ(t)が一定値λをとる ・非定常ポアソン過程:λ(t)が時間変化
7 7 ポアソン過程 ・1日単位では, λ(t)の変動はそれほど激しくないと想定 →定常ポアソン過程で近似 (λ(t)≈λ) ・週単位, 月単位, 年単位ではさすがに非定常性を考慮する必要がある
→日毎に推定したλからλ(t)を"復元"できるか?(今後の課題)
8 8 定常ポアソン過程の性質 ・強度λの定常ポアソン過程から観測期間[0, T]に発生するイベント数nの分布は 以下のポアソン分布になる → イベント数がnになる確率がわかる →定常ポアソン性を仮定した期間に対しては, その期間に発生するイベント数の確率モデル
をこの形で与えられる
9 9 パラメータλの推定 ・注文発生時刻(分単位)t_iの実データからλを最尤推定 t_iには依存せず, nにのみ依存 →(λの最尤推定量)=(nの観測値)/T 問題点(?):Tは定数なのでλ∝n → 注文数自体の推移を追っているのと同じになる
10 10 データとデータから推定されたモデルの比較
11 11 まとめ ・定常ポアソン過程に従うと仮定した観測区間においては, イベント数のみに着目すればよい ・強度λはイベント数の観測値から推定可能 ・イベント数の従う分布がわかるので, P(lower_bound<n<upper_bound)なども計算できる
12 12 今後の課題 ・週単位, 月単位, 年単位での非定常的な振る舞いをどのように推定するか -予測するためには未来の強度λを推定する必要がある ・定常性を仮定する区間[0, T]をどのように定めるか -今回は「1日」だったが,
これを狭めるべき? 広げるべき? -注文がスパースな時間帯(2:00~6:00)の存在→1日を何分割かにするなどの対策を講じる?
13 13 参考文献 ・T. S. Gutleb, J. A. Carrillo and
S. Olver: Computing equilibrium measures with power law kernels. Mathematics of Computation, 91, 37(2022), pp. 2247--2281. ・近江崇広・野村俊一 : 「点過程の時系列解析」. 共立出版, 2019.
14 Thank you