Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
点過程によるモデリング
Search
NearMeの技術発表資料です
PRO
March 03, 2023
Research
0
710
点過程によるモデリング
NearMeの技術発表資料です
PRO
March 03, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
230
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
25
ローカルLLM
nearme_tech
PRO
0
45
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
28
Box-Muller法
nearme_tech
PRO
1
40
Kiro触ってみた
nearme_tech
PRO
0
350
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
590
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
140
Other Decks in Research
See All in Research
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.7k
説明可能な機械学習と数理最適化
kelicht
2
800
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
590
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
200
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
400
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
780
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.5k
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
340
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
420
Featured
See All Featured
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
35
Marketing to machines
jonoalderson
1
4.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
770
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
410
The Language of Interfaces
destraynor
162
26k
How to Ace a Technical Interview
jacobian
281
24k
Git: the NoSQL Database
bkeepers
PRO
432
66k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Transcript
0 点過程によるモデリング 2023-03-03 第34回NearMe技術勉強会 Futo Ueno
1 1 研究内容(学部) テーマ:均衡測度の数値計算 均衡測度とは? → 最適化問題 の解となる非負測度のこと. この問題は, 微分方程式
で記述される系の定常状態を求める問題において連続極限をとることで導かれる.
2 2 研究内容(学部) この問題は, 測度μに関する最適化問題 →そのまま解くのは難しい 密度関数ρを使って dμ(x)=ρ(x)dx と書けると仮定し, ある関数系
を用いてρを展開し, 近似することを考える: supp(ρ)=[a, b]とすると, 実はa, bに関する最適化問題(2変数)に帰着できる(詳細は略)
3 研究内容(大学院) テーマ:確率過程の統計解析 確率過程とは?・・・確率的に時間発展する対象を記述する数理モデル ・連続時間 例:ブラウン運動 ⊂ 拡散過程 ・離散時間 例:ランダムウォーク
⊂ マルコフ連鎖 連続時間の確率過程を考えるメリット: ・解析学的手法を適用できる→確率微分方程式など ・ のランダム性だけでなく, 観測時刻(例 : イベントの発生時刻) のランダム性も考慮したモデルを作れる
4 4 点過程 点過程:空間上にランダムに分布する「点」の集合に関する確率過程 →時系列解析の文脈では「点」は「イベントの発生」に対応している イベントの発生時刻 は確率変数として扱う →ある観測区間[0, T]に得られる は,
試行ごとに異なる →点過程は確率密度関数 によって特徴づけられる
5 5 ・ある1日の注文発生履歴
6 6 ポアソン過程 ポアソン過程:それぞれのイベントが互いに独立に発生することを仮定したモデル 微小な区間[t, t+dt]にイベントが発生する確率を P(event in [t, t+dt])=λ(t)dt
で与える ここで, λ(t)は強度関数で, 時刻tにおけるイベントの発生のしやすさを表す. ・定常ポアソン過程:λ(t)が一定値λをとる ・非定常ポアソン過程:λ(t)が時間変化
7 7 ポアソン過程 ・1日単位では, λ(t)の変動はそれほど激しくないと想定 →定常ポアソン過程で近似 (λ(t)≈λ) ・週単位, 月単位, 年単位ではさすがに非定常性を考慮する必要がある
→日毎に推定したλからλ(t)を"復元"できるか?(今後の課題)
8 8 定常ポアソン過程の性質 ・強度λの定常ポアソン過程から観測期間[0, T]に発生するイベント数nの分布は 以下のポアソン分布になる → イベント数がnになる確率がわかる →定常ポアソン性を仮定した期間に対しては, その期間に発生するイベント数の確率モデル
をこの形で与えられる
9 9 パラメータλの推定 ・注文発生時刻(分単位)t_iの実データからλを最尤推定 t_iには依存せず, nにのみ依存 →(λの最尤推定量)=(nの観測値)/T 問題点(?):Tは定数なのでλ∝n → 注文数自体の推移を追っているのと同じになる
10 10 データとデータから推定されたモデルの比較
11 11 まとめ ・定常ポアソン過程に従うと仮定した観測区間においては, イベント数のみに着目すればよい ・強度λはイベント数の観測値から推定可能 ・イベント数の従う分布がわかるので, P(lower_bound<n<upper_bound)なども計算できる
12 12 今後の課題 ・週単位, 月単位, 年単位での非定常的な振る舞いをどのように推定するか -予測するためには未来の強度λを推定する必要がある ・定常性を仮定する区間[0, T]をどのように定めるか -今回は「1日」だったが,
これを狭めるべき? 広げるべき? -注文がスパースな時間帯(2:00~6:00)の存在→1日を何分割かにするなどの対策を講じる?
13 13 参考文献 ・T. S. Gutleb, J. A. Carrillo and
S. Olver: Computing equilibrium measures with power law kernels. Mathematics of Computation, 91, 37(2022), pp. 2247--2281. ・近江崇広・野村俊一 : 「点過程の時系列解析」. 共立出版, 2019.
14 Thank you