Upgrade to Pro — share decks privately, control downloads, hide ads and more …

点過程によるモデリング

 点過程によるモデリング

More Decks by NearMeの技術発表資料です

Other Decks in Research

Transcript

  1. 2 2 研究内容(学部) この問題は, 測度μに関する最適化問題 →そのまま解くのは難しい 密度関数ρを使って dμ(x)=ρ(x)dx と書けると仮定し, ある関数系

    を用いてρを展開し, 近似することを考える: supp(ρ)=[a, b]とすると, 実はa, bに関する最適化問題(2変数)に帰着できる(詳細は略)
  2. 3 研究内容(大学院) テーマ:確率過程の統計解析 確率過程とは?・・・確率的に時間発展する対象を記述する数理モデル ・連続時間 例:ブラウン運動 ⊂ 拡散過程 ・離散時間 例:ランダムウォーク

    ⊂ マルコフ連鎖 連続時間の確率過程を考えるメリット: ・解析学的手法を適用できる→確率微分方程式など ・ のランダム性だけでなく, 観測時刻(例 : イベントの発生時刻) のランダム性も考慮したモデルを作れる
  3. 6 6 ポアソン過程 ポアソン過程:それぞれのイベントが互いに独立に発生することを仮定したモデル 微小な区間[t, t+dt]にイベントが発生する確率を P(event in [t, t+dt])=λ(t)dt

    で与える ここで, λ(t)は強度関数で, 時刻tにおけるイベントの発生のしやすさを表す. ・定常ポアソン過程:λ(t)が一定値λをとる ・非定常ポアソン過程:λ(t)が時間変化
  4. 13 13 参考文献 ・T. S. Gutleb, J. A. Carrillo and

    S. Olver: Computing equilibrium measures with power law kernels. Mathematics of Computation, 91, 37(2022), pp. 2247--2281. ・近江崇広・野村俊一 : 「点過程の時系列解析」. 共立出版, 2019.