Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Siamese neural networks in recommendation
Search
Newbees Inc
June 06, 2024
Research
0
110
Siamese neural networks in recommendation
Newbees Inc
June 06, 2024
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
130
Newbees採用資料(2025.10更新)
newbees
2
46k
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
newbees
0
260
Other Decks in Research
See All in Research
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
240
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
110
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
140
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
280
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
750
説明可能な機械学習と数理最適化
kelicht
0
260
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
230
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
150
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
210
20250725-bet-ai-day
cipepser
2
500
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
490
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
The Cult of Friendly URLs
andyhume
79
6.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Visualization
eitanlees
149
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Site-Speed That Sticks
csswizardry
13
930
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
130k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
Making Projects Easy
brettharned
120
6.4k
Transcript
Siamese neural networks in recommendation Newbees論⽂読み会 ⾶⽥ 祥弥
⽬次 • 概要 • Siamese Neural Networks(SNN) • 適⽤分野 •
適⽤タスク • 順伝播構造のアルゴリズム • 評価指標 • 今後の課題
概要 Siamese neural network(SNN)のRecommender Systems(RS)への適⽤⽂献がこれまで になく、そのため、本論⽂はそれらをサーベイし、以下に沿って⼿法や課題について詳説している。 • SNNをRSに適⽤する最新の⼿法(~2023)について • 対象となるRSのタスク、SNNの適⽤⽅法、評価⽅法について
• ⽂献や実験的観点から考えられるSNNxRSにおけるギャップや課題について
Siamese Neural Networks (SNN) 1993年より2つの署名の類似度を測定するタスクで使われるようになり、代表的なアーキテクチャ として、Pairs(1993)とTriplets(2015)形式のものがある。
Siamese Neural Networks (SNN): Pair形式 • ⼊⼒には類似度を測りたい2画像を⽤いる。順伝播の際に2つのnetwork間で重みを共有する形 で学習が進む。 • 各networkから抽出した特徴ベクトルから
損失関数により類似度(距離)を推定する。 • 損失関数にはBinary Cross Entropyや Contrastive lossが⽤いられる。
Siamese Neural Networks (SNN): Triplets形式 • ⼊⼒は3つあり、anchorには何かしらの画像、positiveにはanchorと類似した画像、negative にはanchorと類似していない画像を⼊⼒する。 • 順伝播構造はPairs形式と同じ
であるが損失関数が異なる。 • 損失関数にはTriplet Lossが ⽤いられる。 A, P, Nはanchor, positive, negative αはpositiveとnegativeのマージン(=1) e()は各⼊⼒パラメータの埋め込み
適⽤分野 SNNによるRSは2018年まで⽂献がなく、ここ数年で発展してきている。 主にEC、ファッション、映画、動画などで適⽤されており、⼊⼒データには画像だけでなく、 テキストや⾳が利⽤されることもある。
適⽤タスク RSにおけるSNNの利⽤⽬的として、純粋な予測のために使⽤する場合と、特徴量抽出を⾏う場合 がある。 順伝播構造は両⽅に⽤いられ、クラスタリングやLTRは後者として中間データで利⽤することを⽬ 的としている。
順伝播構造のアルゴリズム 順伝播構造を利⽤する場合には、主に5つのアーキテクチャが利⽤されており、 2023年の時点では最もCNNが利⽤されている。 TransformerやGCN(Graph Conv Network)などは発表から数年ほどの論⽂であるため、適⽤ 例が少ないものと思われる。
評価指標 RSの領域がエラーメトリクスよりもランキングメトリクス を考慮する傾向がある。 また、そのことから⼀般的な評価指標とされる、 Recall@K, Presicion@K, Accuracy, AUC, F1, NDCG,
MRR, HR などが利⽤されている。
今後の課題 • 未だ発展途上の領域であるため、アルゴリズムや損失関数などの提案により、改善する余地が ある。 • どの研究も精度以外の評価指標(多様性やカバレッジなど)を考慮できていないため、バイアス (⼈気度合いによる偏り)が起こる可能性がある。 • SNNのRS適⽤領域が乏しく且つ、シンプルなアルゴリズムであるため、未適⽤の主な領域 (Web、SNS等)へ適⽤することで、新たなプラスな⾯での寄与を促すことが必要である。