Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Siamese neural networks in recommendation
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Newbees Inc
June 06, 2024
Research
0
120
Siamese neural networks in recommendation
Newbees Inc
June 06, 2024
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
130
Newbees採用資料(2026.02更新)
newbees
2
49k
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
newbees
0
280
Other Decks in Research
See All in Research
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
120
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
490
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
LLMアプリケーションの透明性について
fufufukakaka
0
120
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Nullspace MPC
mizuhoaoki
1
700
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
120
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.5k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
150
Featured
See All Featured
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
310
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Odyssey Design
rkendrick25
PRO
1
490
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
100
Evolving SEO for Evolving Search Engines
ryanjones
0
120
Discover your Explorer Soul
emna__ayadi
2
1.1k
Building Applications with DynamoDB
mza
96
6.9k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
660
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
Siamese neural networks in recommendation Newbees論⽂読み会 ⾶⽥ 祥弥
⽬次 • 概要 • Siamese Neural Networks(SNN) • 適⽤分野 •
適⽤タスク • 順伝播構造のアルゴリズム • 評価指標 • 今後の課題
概要 Siamese neural network(SNN)のRecommender Systems(RS)への適⽤⽂献がこれまで になく、そのため、本論⽂はそれらをサーベイし、以下に沿って⼿法や課題について詳説している。 • SNNをRSに適⽤する最新の⼿法(~2023)について • 対象となるRSのタスク、SNNの適⽤⽅法、評価⽅法について
• ⽂献や実験的観点から考えられるSNNxRSにおけるギャップや課題について
Siamese Neural Networks (SNN) 1993年より2つの署名の類似度を測定するタスクで使われるようになり、代表的なアーキテクチャ として、Pairs(1993)とTriplets(2015)形式のものがある。
Siamese Neural Networks (SNN): Pair形式 • ⼊⼒には類似度を測りたい2画像を⽤いる。順伝播の際に2つのnetwork間で重みを共有する形 で学習が進む。 • 各networkから抽出した特徴ベクトルから
損失関数により類似度(距離)を推定する。 • 損失関数にはBinary Cross Entropyや Contrastive lossが⽤いられる。
Siamese Neural Networks (SNN): Triplets形式 • ⼊⼒は3つあり、anchorには何かしらの画像、positiveにはanchorと類似した画像、negative にはanchorと類似していない画像を⼊⼒する。 • 順伝播構造はPairs形式と同じ
であるが損失関数が異なる。 • 損失関数にはTriplet Lossが ⽤いられる。 A, P, Nはanchor, positive, negative αはpositiveとnegativeのマージン(=1) e()は各⼊⼒パラメータの埋め込み
適⽤分野 SNNによるRSは2018年まで⽂献がなく、ここ数年で発展してきている。 主にEC、ファッション、映画、動画などで適⽤されており、⼊⼒データには画像だけでなく、 テキストや⾳が利⽤されることもある。
適⽤タスク RSにおけるSNNの利⽤⽬的として、純粋な予測のために使⽤する場合と、特徴量抽出を⾏う場合 がある。 順伝播構造は両⽅に⽤いられ、クラスタリングやLTRは後者として中間データで利⽤することを⽬ 的としている。
順伝播構造のアルゴリズム 順伝播構造を利⽤する場合には、主に5つのアーキテクチャが利⽤されており、 2023年の時点では最もCNNが利⽤されている。 TransformerやGCN(Graph Conv Network)などは発表から数年ほどの論⽂であるため、適⽤ 例が少ないものと思われる。
評価指標 RSの領域がエラーメトリクスよりもランキングメトリクス を考慮する傾向がある。 また、そのことから⼀般的な評価指標とされる、 Recall@K, Presicion@K, Accuracy, AUC, F1, NDCG,
MRR, HR などが利⽤されている。
今後の課題 • 未だ発展途上の領域であるため、アルゴリズムや損失関数などの提案により、改善する余地が ある。 • どの研究も精度以外の評価指標(多様性やカバレッジなど)を考慮できていないため、バイアス (⼈気度合いによる偏り)が起こる可能性がある。 • SNNのRS適⽤領域が乏しく且つ、シンプルなアルゴリズムであるため、未適⽤の主な領域 (Web、SNS等)へ適⽤することで、新たなプラスな⾯での寄与を促すことが必要である。