Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Matching theory-based recommender systems in on...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Newbees Inc
June 06, 2024
Research
0
130
Matching theory-based recommender systems in online dating
Newbees Inc
June 06, 2024
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Siamese neural networks in recommendation
newbees
0
120
Newbees採用資料(2026.02更新)
newbees
2
49k
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
newbees
0
280
Other Decks in Research
See All in Research
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
説明可能な機械学習と数理最適化
kelicht
2
940
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
710
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
LLMアプリケーションの透明性について
fufufukakaka
0
140
Featured
See All Featured
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
79
WENDY [Excerpt]
tessaabrams
9
36k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
750
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
77
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
The agentic SEO stack - context over prompts
schlessera
0
640
Code Review Best Practice
trishagee
74
20k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
Optimizing for Happiness
mojombo
379
71k
Transcript
Matching theory-based recommender systems in online dating Newbees論⽂読み会 ⾶⽥ 祥弥
⽬次 • 概要 • 相互推薦システムとは • TUマッチング(Matching with Transferable Utility)
• MTRS(Matching theory-based Recommender Systems) • オンラインデートにおける応⽤と課題 • 今後の⽅向性
概要 Reciprocal Recommender System(以降RSS)は相互を考慮した推薦システムであり、以下のよ うな点を考慮する必要がある。 • 双⽅のユーザーが利益を得られるようレコメンドすること • 適合されやすいユーザーのみがレコメンドされないように設計すること この論⽂では、マッチング理論(1962~)に基づいたRSSを提案し、
実際の適⽤へ向けたプロジェクト紹介や⽅向性を⽰している。
相互推薦システムとは RSSは双⽅の嗜好度(Preference score)を計算し、それらを集約した結果を基にレコメンドを ⾏う。レコメンドにおいて以下の2点が肝となる 1. 双⽅の嗜好度を計算する⼿法(コンテンツベース、協調フィルタリングベース) 2. 双⽅の嗜好度を集約する⼿法(調和平均、算術平均、幾何平均、交差⽐均⼀、重み付平均) like? like?
Aggregation Function Reciprocal score Predict preferences
TUマッチング(Matching with Transferable Utility) 元々、市場経済におけるジョブマッチング(労働者-企業間)における、賃⾦の移動額が両者の需 要に合うような均衡を⾒つける動機で使われる。 労働者と企業で雇⽤契約(マッチング)した際に、発⽣する移転(賃⾦等)が⾏われるとした場合 に、その移転コストが需要と供給によって調整するようにする。 大手企業 中小企業
中小企業 スキルが足りないかも…
MTRS(Matching Theory-based Recommender Systems) 従来のRSSにTUマッチングを組み込むことで、均衡を考慮した新しいMTRSを提案している。
今後の⽅向性 • NTUマッチング(⾮伝達型) • アファーマティブアクションによるマッチング • 地域制約を活⽤したマッチング • MTRSとバンディットアルゴリズムを活⽤したマッチング