Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Newbees Inc
June 05, 2023
Programming
0
280
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
2023年6月1日に開催された「Go Conference2023」
登壇した際の資料となります。
Newbees Inc
June 05, 2023
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
130
Siamese neural networks in recommendation
newbees
0
120
Newbees採用資料(2026.02更新)
newbees
2
49k
Other Decks in Programming
See All in Programming
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.5k
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.7k
高速開発のためのコード整理術
sutetotanuki
1
380
Fragmented Architectures
denyspoltorak
0
140
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
AI & Enginnering
codelynx
0
110
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
200
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.3k
AIエージェントの設計で注意するべきポイント6選
har1101
7
3.4k
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
240
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
12
6.4k
CSC307 Lecture 05
javiergs
PRO
0
490
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Rails Girls Zürich Keynote
gr2m
96
14k
Design in an AI World
tapps
0
140
Why Our Code Smells
bkeepers
PRO
340
58k
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Docker and Python
trallard
47
3.7k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Transcript
Goで並⾏処理を⽤いた 画像処理を実装した話 Yuya Hiramatsu Go Conference 2023 (2023-06-02)
⾃⼰紹介 株式会社Newbees 所 属 バックエンド, iOS, 研究開発(画像解析, 機械学習) 担 当
Yuya Hiramatsu 名 前 Goでは主に画像解析の実装経験がある
背景 要件:ユーザーから受信した⾝分証画像の番号をモザイク加⼯する OCRにより画像内から検出された⽂字の位置情報を元に 任意の4点を結ぶ四⾓形内をモザイク加⼯する処理を実装 保険証の番号をモザイク加⼯した例
背景 ⽬的の画像処理ライブラリがなかったため独⾃で実装する必要があった 並⾏処理を⽤いて処理時間の⾼速化を図る 保険証の番号をモザイク加⼯した例
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 各ブロックの処理を複数のgoroutineで⾏い並⾏処理化する goroutine A goroutine B goroutine C goroutine D
4つのgoroutineで処理する例
// goroutine起動 // 起動するgoroutine数 // i番⽬のgoroutineが処理するブロックの範囲 // 全てのgoroutineの処理が終わるまで待機 // (x,
y)番地のブロックのマスキング処理 並⾏処理部分のソースコード
実験環境 l MacBook Pro M1(2021) • メモリ16GB, 8スレッド l 画像:スマホで撮影した⾝分証
• サイズ:3024×4032 [pixel] • マスキング対象箇所:5箇所 l ベンチマーク testingパッケージのBenchmark関数 対象画像の例 (⾚枠がマスキング対象)
ベンチマーク 並⾏処理化前 並⾏処理化後 平均処理時間 割り当てられた メモリ量 割り当て回数 実⾏回数 およそ3倍速くなった
余談:並⾏処理化に伴ったアルゴリズムの変更 従来⼿法:並⾏処理化が難しく計算コストが⾼い 四⾓形内のピクセルを抽出する際に端から連続的に操作する必要があり 複数スレッドでの処理分割が困難だった 2度⽬に境界線に当たったら 内部判定終了 端から順番にピクセルを⾒ていき 初めて境界線に当たったら内部判定開始
余談:並⾏処理化に伴ったアルゴリズムの変更 各ピクセルごとに独⽴して処理できるアルゴリズムに改修 サイズが⼤きい画像において処理時間が平均3秒改善された
考察とまとめ l 画像処理の並⾏処理化により処理速度が向上 • 画像処理は並⾏処理可能な計算が多いため並⾏処理に向いている • goroutineを⽤いる実装の⼿軽さを実感 l アルゴリズムの変更により処理速度が⼤幅に向上 •
処理を⾼速化したい場合はまず初めにアルゴリズムを⾒直すことが 重要
Engineer、Designer、Director、QA、HRGA Newbeesでは全ての部署で⼀緒に働くメンバーを募集中です! We Are Hiring! Newbees 採⽤情報 https://newbees.jp/career/