Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
Search
Newbees Inc
June 05, 2023
Programming
0
200
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
2023年6月1日に開催された「Go Conference2023」
登壇した際の資料となります。
Newbees Inc
June 05, 2023
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
87
Siamese neural networks in recommendation
newbees
0
74
Newbees採用資料(2025.01更新)
newbees
2
29k
Other Decks in Programming
See All in Programming
時計仕掛けのCompose
mkeeda
1
300
Ruby on cygwin 2025-02
fd0
0
150
パスキーのすべて ── 導入・UX設計・実装の紹介 / 20250213 パスキー開発者の集い
kuralab
3
790
法律の脱レガシーに学ぶフロントエンド刷新
oguemon
5
740
Grafana Loki によるサーバログのコスト削減
mot_techtalk
1
130
動作確認やテストで漏れがちな観点3選
starfish719
6
1k
Formの複雑さに立ち向かう
bmthd
1
850
Multi Step Form, Decentralized Autonomous Organization
pumpkiinbell
1
750
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
170
『GO』アプリ バックエンドサーバのコスト削減
mot_techtalk
0
140
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
Grafana Cloudとソラカメ
devoc
0
170
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
A Tale of Four Properties
chriscoyier
158
23k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
The Invisible Side of Design
smashingmag
299
50k
Side Projects
sachag
452
42k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Transcript
Goで並⾏処理を⽤いた 画像処理を実装した話 Yuya Hiramatsu Go Conference 2023 (2023-06-02)
⾃⼰紹介 株式会社Newbees 所 属 バックエンド, iOS, 研究開発(画像解析, 機械学習) 担 当
Yuya Hiramatsu 名 前 Goでは主に画像解析の実装経験がある
背景 要件:ユーザーから受信した⾝分証画像の番号をモザイク加⼯する OCRにより画像内から検出された⽂字の位置情報を元に 任意の4点を結ぶ四⾓形内をモザイク加⼯する処理を実装 保険証の番号をモザイク加⼯した例
背景 ⽬的の画像処理ライブラリがなかったため独⾃で実装する必要があった 並⾏処理を⽤いて処理時間の⾼速化を図る 保険証の番号をモザイク加⼯した例
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 各ブロックの処理を複数のgoroutineで⾏い並⾏処理化する goroutine A goroutine B goroutine C goroutine D
4つのgoroutineで処理する例
// goroutine起動 // 起動するgoroutine数 // i番⽬のgoroutineが処理するブロックの範囲 // 全てのgoroutineの処理が終わるまで待機 // (x,
y)番地のブロックのマスキング処理 並⾏処理部分のソースコード
実験環境 l MacBook Pro M1(2021) • メモリ16GB, 8スレッド l 画像:スマホで撮影した⾝分証
• サイズ:3024×4032 [pixel] • マスキング対象箇所:5箇所 l ベンチマーク testingパッケージのBenchmark関数 対象画像の例 (⾚枠がマスキング対象)
ベンチマーク 並⾏処理化前 並⾏処理化後 平均処理時間 割り当てられた メモリ量 割り当て回数 実⾏回数 およそ3倍速くなった
余談:並⾏処理化に伴ったアルゴリズムの変更 従来⼿法:並⾏処理化が難しく計算コストが⾼い 四⾓形内のピクセルを抽出する際に端から連続的に操作する必要があり 複数スレッドでの処理分割が困難だった 2度⽬に境界線に当たったら 内部判定終了 端から順番にピクセルを⾒ていき 初めて境界線に当たったら内部判定開始
余談:並⾏処理化に伴ったアルゴリズムの変更 各ピクセルごとに独⽴して処理できるアルゴリズムに改修 サイズが⼤きい画像において処理時間が平均3秒改善された
考察とまとめ l 画像処理の並⾏処理化により処理速度が向上 • 画像処理は並⾏処理可能な計算が多いため並⾏処理に向いている • goroutineを⽤いる実装の⼿軽さを実感 l アルゴリズムの変更により処理速度が⼤幅に向上 •
処理を⾼速化したい場合はまず初めにアルゴリズムを⾒直すことが 重要
Engineer、Designer、Director、QA、HRGA Newbeesでは全ての部署で⼀緒に働くメンバーを募集中です! We Are Hiring! Newbees 採⽤情報 https://newbees.jp/career/