Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
Search
Newbees Inc
June 05, 2023
Programming
0
250
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
2023年6月1日に開催された「Go Conference2023」
登壇した際の資料となります。
Newbees Inc
June 05, 2023
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
120
Siamese neural networks in recommendation
newbees
0
110
Newbees採用資料(2025.01更新)
newbees
2
44k
Other Decks in Programming
See All in Programming
1から理解するWeb Push
dora1998
7
1.9k
アプリの "かわいい" を支えるアニメーションツールRiveについて
uetyo
0
280
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
190
知っているようで知らない"rails new"の世界 / The World of "rails new" You Think You Know but Don't
luccafort
PRO
1
190
Navigating Dependency Injection with Metro
zacsweers
3
3.5k
ファインディ株式会社におけるMCP活用とサービス開発
starfish719
0
2.1k
Updates on MLS on Ruby (and maybe more)
sylph01
1
180
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
2.8k
OSS開発者という働き方
andpad
5
1.7k
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
400
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
250
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1370
200k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
RailsConf 2023
tenderlove
30
1.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Into the Great Unknown - MozCon
thekraken
40
2k
The World Runs on Bad Software
bkeepers
PRO
70
11k
A Modern Web Designer's Workflow
chriscoyier
696
190k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Fireside Chat
paigeccino
39
3.6k
Transcript
Goで並⾏処理を⽤いた 画像処理を実装した話 Yuya Hiramatsu Go Conference 2023 (2023-06-02)
⾃⼰紹介 株式会社Newbees 所 属 バックエンド, iOS, 研究開発(画像解析, 機械学習) 担 当
Yuya Hiramatsu 名 前 Goでは主に画像解析の実装経験がある
背景 要件:ユーザーから受信した⾝分証画像の番号をモザイク加⼯する OCRにより画像内から検出された⽂字の位置情報を元に 任意の4点を結ぶ四⾓形内をモザイク加⼯する処理を実装 保険証の番号をモザイク加⼯した例
背景 ⽬的の画像処理ライブラリがなかったため独⾃で実装する必要があった 並⾏処理を⽤いて処理時間の⾼速化を図る 保険証の番号をモザイク加⼯した例
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 各ブロックの処理を複数のgoroutineで⾏い並⾏処理化する goroutine A goroutine B goroutine C goroutine D
4つのgoroutineで処理する例
// goroutine起動 // 起動するgoroutine数 // i番⽬のgoroutineが処理するブロックの範囲 // 全てのgoroutineの処理が終わるまで待機 // (x,
y)番地のブロックのマスキング処理 並⾏処理部分のソースコード
実験環境 l MacBook Pro M1(2021) • メモリ16GB, 8スレッド l 画像:スマホで撮影した⾝分証
• サイズ:3024×4032 [pixel] • マスキング対象箇所:5箇所 l ベンチマーク testingパッケージのBenchmark関数 対象画像の例 (⾚枠がマスキング対象)
ベンチマーク 並⾏処理化前 並⾏処理化後 平均処理時間 割り当てられた メモリ量 割り当て回数 実⾏回数 およそ3倍速くなった
余談:並⾏処理化に伴ったアルゴリズムの変更 従来⼿法:並⾏処理化が難しく計算コストが⾼い 四⾓形内のピクセルを抽出する際に端から連続的に操作する必要があり 複数スレッドでの処理分割が困難だった 2度⽬に境界線に当たったら 内部判定終了 端から順番にピクセルを⾒ていき 初めて境界線に当たったら内部判定開始
余談:並⾏処理化に伴ったアルゴリズムの変更 各ピクセルごとに独⽴して処理できるアルゴリズムに改修 サイズが⼤きい画像において処理時間が平均3秒改善された
考察とまとめ l 画像処理の並⾏処理化により処理速度が向上 • 画像処理は並⾏処理可能な計算が多いため並⾏処理に向いている • goroutineを⽤いる実装の⼿軽さを実感 l アルゴリズムの変更により処理速度が⼤幅に向上 •
処理を⾼速化したい場合はまず初めにアルゴリズムを⾒直すことが 重要
Engineer、Designer、Director、QA、HRGA Newbeesでは全ての部署で⼀緒に働くメンバーを募集中です! We Are Hiring! Newbees 採⽤情報 https://newbees.jp/career/