Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
Search
Newbees Inc
June 05, 2023
Programming
0
270
Goで並⾏処理を⽤いた 画像処理を実装した話|株式会社Newbees
2023年6月1日に開催された「Go Conference2023」
登壇した際の資料となります。
Newbees Inc
June 05, 2023
Tweet
Share
More Decks by Newbees Inc
See All by Newbees Inc
Matching theory-based recommender systems in online dating
newbees
0
130
Siamese neural networks in recommendation
newbees
0
110
Newbees採用資料(2025.10更新)
newbees
2
47k
Other Decks in Programming
See All in Programming
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
2.9k
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
410
社内オペレーション改善のためのTypeScript / TSKaigi Hokuriku 2025
dachi023
1
500
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
3
1.2k
テストやOSS開発に役立つSetup PHP Action
matsuo_atsushi
0
140
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
1.1k
dnx で実行できるコマンド、作ってみました
tomohisa
0
140
Level up your Gemini CLI - D&D Style!
palladius
1
170
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
480
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
270
ゲームの物理 剛体編
fadis
0
170
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
610
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
80
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Building Applications with DynamoDB
mza
96
6.8k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Being A Developer After 40
akosma
91
590k
Rails Girls Zürich Keynote
gr2m
95
14k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
What's in a price? How to price your products and services
michaelherold
246
12k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
Goで並⾏処理を⽤いた 画像処理を実装した話 Yuya Hiramatsu Go Conference 2023 (2023-06-02)
⾃⼰紹介 株式会社Newbees 所 属 バックエンド, iOS, 研究開発(画像解析, 機械学習) 担 当
Yuya Hiramatsu 名 前 Goでは主に画像解析の実装経験がある
背景 要件:ユーザーから受信した⾝分証画像の番号をモザイク加⼯する OCRにより画像内から検出された⽂字の位置情報を元に 任意の4点を結ぶ四⾓形内をモザイク加⼯する処理を実装 保険証の番号をモザイク加⼯した例
背景 ⽬的の画像処理ライブラリがなかったため独⾃で実装する必要があった 並⾏処理を⽤いて処理時間の⾼速化を図る 保険証の番号をモザイク加⼯した例
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 1. ⽂字を囲う四⾓形内を複数のブロックに区切る 2. 各ブロック内の平均ピクセル値を求める 3. 各ブロック内の全てのピクセルを2.で求めた平均ピクセル値に更新する
アルゴリズム 各ブロックの処理を複数のgoroutineで⾏い並⾏処理化する goroutine A goroutine B goroutine C goroutine D
4つのgoroutineで処理する例
// goroutine起動 // 起動するgoroutine数 // i番⽬のgoroutineが処理するブロックの範囲 // 全てのgoroutineの処理が終わるまで待機 // (x,
y)番地のブロックのマスキング処理 並⾏処理部分のソースコード
実験環境 l MacBook Pro M1(2021) • メモリ16GB, 8スレッド l 画像:スマホで撮影した⾝分証
• サイズ:3024×4032 [pixel] • マスキング対象箇所:5箇所 l ベンチマーク testingパッケージのBenchmark関数 対象画像の例 (⾚枠がマスキング対象)
ベンチマーク 並⾏処理化前 並⾏処理化後 平均処理時間 割り当てられた メモリ量 割り当て回数 実⾏回数 およそ3倍速くなった
余談:並⾏処理化に伴ったアルゴリズムの変更 従来⼿法:並⾏処理化が難しく計算コストが⾼い 四⾓形内のピクセルを抽出する際に端から連続的に操作する必要があり 複数スレッドでの処理分割が困難だった 2度⽬に境界線に当たったら 内部判定終了 端から順番にピクセルを⾒ていき 初めて境界線に当たったら内部判定開始
余談:並⾏処理化に伴ったアルゴリズムの変更 各ピクセルごとに独⽴して処理できるアルゴリズムに改修 サイズが⼤きい画像において処理時間が平均3秒改善された
考察とまとめ l 画像処理の並⾏処理化により処理速度が向上 • 画像処理は並⾏処理可能な計算が多いため並⾏処理に向いている • goroutineを⽤いる実装の⼿軽さを実感 l アルゴリズムの変更により処理速度が⼤幅に向上 •
処理を⾼速化したい場合はまず初めにアルゴリズムを⾒直すことが 重要
Engineer、Designer、Director、QA、HRGA Newbeesでは全ての部署で⼀緒に働くメンバーを募集中です! We Are Hiring! Newbees 採⽤情報 https://newbees.jp/career/