Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
300
OpenAPIから画面生成に挑戦した話
koinunopochi
0
110
Backboneとしてのtimm2025
yu4u
3
1.2k
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
35
16k
意志の力が9割。アニメから学ぶAI時代のこれから。
endohizumi
1
110
[kickflow]20250319_少人数チームでのAutify活用
otouhujej
0
200
夏休みWebアプリパフォーマンス相談室/web-app-performance-on-radio
hachi_eiji
1
290
JOAI発表資料 @ 関東kaggler会
joai_committee
1
180
あとはAIに任せて人間は自由に生きる
kentaro
3
1k
20250818_KGX・One Hokkaidoコラボイベント
tohgeyukihiro
0
130
自治体職員がガバクラの AWS 閉域ネットワークを理解するのにやって良かった個人検証環境
takeda_h
2
360
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
210
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Agile that works and the tools we love
rasmusluckow
329
21k
Designing for humans not robots
tammielis
253
25k
Code Review Best Practice
trishagee
70
19k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Being A Developer After 40
akosma
90
590k
Building an army of robots
kneath
306
45k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
A Tale of Four Properties
chriscoyier
160
23k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
The Invisible Side of Design
smashingmag
301
51k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11