Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
580
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.7k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
2025年の挑戦 コーポレートエンジニアの技術広報/techpr5
nishiuma
0
140
PaaSの歴史と、 アプリケーションプラットフォームのこれから
jacopen
7
1.4k
Accessibility Inspectorを活用した アプリのアクセシビリティ向上方法
hinakko
0
180
Evolving Architecture
rainerhahnekamp
3
250
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!事例のご紹介+座学②
siyuanzh09
0
110
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
2.3k
Amazon Route 53, 待ちに待った TLSAレコードのサポート開始
kenichinakamura
0
150
データ基盤におけるIaCの重要性とその運用
mtpooh
4
440
Amazon Q Developerで.NET Frameworkプロジェクトをモダナイズしてみた
kenichirokimura
1
190
AWSサービスアップデート 2024/12 Part3
nrinetcom
PRO
0
140
Copilotの力を実感!3ヶ月間の生成AI研修の試行錯誤&成功事例をご紹介。果たして得たものとは・・?
ktc_shiori
0
340
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Site-Speed That Sticks
csswizardry
2
270
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Become a Pro
speakerdeck
PRO
26
5.1k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
860
Visualization
eitanlees
146
15k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11