Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
Text-to-SQLの評価データセットを作って最新LLMモデルの性能評価をしてみた
gotalab555
3
740
Cloud Native Scalability for Internal Developer Platforms
hhiroshell
2
260
kotlin-lsp を Emacs で使えるようにしてみた / use kotlin-lsp in Emacs
nabeo
0
120
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.3k
大失敗しないための Web API 開発レシピ / A recipe for not making a big failure on WebAPI development
yokawasa
1
250
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/03 - 2025/05
oracle4engineer
PRO
1
170
Kafka vs. Pulsar: Performance Evaluation by Petabyte-Scale Streaming Platform Providers
lycorptech_jp
PRO
1
350
vLLM meetup Tokyo
jpishikawa
1
150
エンジニア採用から始まる技術広報と組織づくり/202506lt
nishiuma
8
1.5k
AI とペアプロしてわかった 3 つのヒューマンエラー
takahiroikegawa
1
640
「規約、知識、オペレーション」から考える中規模以上の開発組織のCursorルールの 考え方・育て方 / Cursor Rules for Coding Styles, Domain Knowledges and Operations
yuitosato
4
910
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.9k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Documentation Writing (for coders)
carmenintech
71
4.9k
Bash Introduction
62gerente
614
210k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Raft: Consensus for Rubyists
vanstee
138
7k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Statistics for Hackers
jakevdp
799
220k
Writing Fast Ruby
sferik
628
61k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
770
The Cost Of JavaScript in 2023
addyosmani
50
8.3k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11