Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
820
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
roppongirb_20250911
igaiga
1
240
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
250
Codeful Serverless / 一人運用でもやり抜く力
_kensh
7
430
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
220
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
850
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
110
【初心者向け】ローカルLLMの色々な動かし方まとめ
aratako
7
3.5k
KotlinConf 2025_イベントレポート
sony
1
140
Android Audio: Beyond Winning On It
atsushieno
0
850
💡Ruby 川辺で灯すPicoRubyからの光
bash0c7
0
120
allow_retry と Arel.sql / allow_retry and Arel.sql
euglena1215
1
170
Rustから学ぶ 非同期処理の仕組み
skanehira
1
140
Featured
See All Featured
Music & Morning Musume
bryan
46
6.8k
Embracing the Ebb and Flow
colly
87
4.8k
Gamification - CAS2011
davidbonilla
81
5.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
The Cult of Friendly URLs
andyhume
79
6.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Building an army of robots
kneath
306
46k
Fireside Chat
paigeccino
39
3.6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11