Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
820
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
KMP の Swift export
kokihirokawa
0
330
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
23
17k
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
170
Azure Well-Architected Framework入門
tomokusaba
1
290
それでも私はContextに値を詰めたい | Go Conference 2025 / go conference 2025 fill context
budougumi0617
4
1.2k
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.8k
BirdCLEF+2025 Noir 5位解法紹介
myso
0
190
FastAPIの魔法をgRPC/Connect RPCへ
monotaro
PRO
1
730
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
920
多様な事業ドメインのクリエイターへ 価値を届けるための営みについて
massyuu
0
110
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
970
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
130
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Fireside Chat
paigeccino
40
3.7k
Unsuck your backbone
ammeep
671
58k
Docker and Python
trallard
46
3.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Gamification - CAS2011
davidbonilla
81
5.5k
Practical Orchestrator
shlominoach
190
11k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11