Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
840
Intro to Spark Streaming
newcircle
1
2k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
660
Java 8 Lambda Expressions & Streams
newcircle
0
620
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.9k
Dave Smith- Mastering the Android Touch System
newcircle
9
17k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
380
Webhook best practices for rock solid and resilient deployments
glaforge
1
280
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
150
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
160
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
配列に見る bash と zsh の違い
kazzpapa3
1
120
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
100
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
AI駆動PjMの理想像 と現在地 -実践例を添えて-
masahiro_okamura
1
110
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
290
Featured
See All Featured
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Site-Speed That Sticks
csswizardry
13
1.1k
Docker and Python
trallard
47
3.7k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
84
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
65
Prompt Engineering for Job Search
mfonobong
0
160
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
49
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Why Our Code Smells
bkeepers
PRO
340
58k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11