Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
840
Intro to Spark Streaming
newcircle
1
2k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
660
Java 8 Lambda Expressions & Streams
newcircle
0
620
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.9k
Dave Smith- Mastering the Android Touch System
newcircle
9
17k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
380
分析画面のクリック操作をそのままコード化 ! エンジニアとビジネスユーザーが共存するAI-ReadyなBI基盤
ikumi
0
120
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
750
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
1
310
VRTと真面目に向き合う
hiragram
1
520
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
4
1.2k
3分でわかる!新機能 AWS Transform custom
sato4mi
1
280
What happened to RubyGems and what can we learn?
mikemcquaid
0
150
「AIでできますか?」から「Agentを作ってみました」へ ~「理論上わかる」と「やってみる」の隔たりを埋める方法
applism118
14
9.2k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
200
Regional_NAT_Gatewayについて_basicとの違い_試した内容スケールアウト_インについて_IPv6_dual_networkでの使い分けなど.pdf
cloudevcode
1
200
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
390
Featured
See All Featured
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2k
Building the Perfect Custom Keyboard
takai
2
680
Joys of Absence: A Defence of Solitary Play
codingconduct
1
280
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
WENDY [Excerpt]
tessaabrams
9
36k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The browser strikes back
jonoalderson
0
350
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
150
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11