Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
830
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
650
Java 8 Lambda Expressions & Streams
newcircle
0
610
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
220
Digital omtanke på Internetdagarna 2025
axbom
PRO
0
130
Dify on AWS の選択肢
ysekiy
0
110
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
360
AI開発の定着を推進するために揃えるべき前提
suguruooki
1
400
スタートアップの事業成長を支えるアーキテクチャとエンジニアリング
doragt
1
8.6k
学術的根拠から読み解くNotebookLMの音声活用法
shukob
0
490
不確実性に備える ABEMA の信頼性設計とオブザーバビリティ基盤
nagapad
4
8.5k
IaC を使いたくないけどポリシー管理をどうにかしたい
kazzpapa3
1
170
PostgreSQL で列データ”ファイル”を利用する ~Arrow/Parquet を統合したデータベースの作成~
kaigai
0
170
重厚長大企業で、顧客価値をスケールさせるためのプロダクトづくりとプロダクト開発チームづくりの裏側 / Developers X Summit 2025
mongolyy
0
200
マルチドライブアーキテクチャ: 複数の駆動力でプロダクトを前進させる
knih
0
11k
Featured
See All Featured
Become a Pro
speakerdeck
PRO
30
5.6k
4 Signs Your Business is Dying
shpigford
186
22k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
The Cult of Friendly URLs
andyhume
79
6.7k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Building Adaptive Systems
keathley
44
2.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Fireside Chat
paigeccino
41
3.7k
How STYLIGHT went responsive
nonsquared
100
5.9k
Bash Introduction
62gerente
615
210k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11