Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
Startups On Rails 2025 @ Tropical on Rails
irinanazarova
0
190
滑らかなユーザー体験も目指す注文管理のマイクロサービス化〜注文情報CSVダウンロード機能の事例〜
demaecan
0
130
データベースで見る『家族アルバム みてね』の変遷 / The Evolution of Family Album Through the Lens of Databases
kohbis
4
1.1k
20250328_RubyKaigiで出会い鯛_____RubyKaigiから始まったはじめてのOSSコントリビュート.pdf
mterada1228
0
420
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.3k
LINEギフトのLINEミニアプリアクセシビリティ改善事例
lycorptech_jp
PRO
0
330
アプリケーション固有の「ロジックの脆弱性」を防ぐ開発者のためのセキュリティ観点
flatt_security
40
15k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
260
Tirez profit de Messenger pour améliorer votre architecture
tucksaun
1
200
AWS CDK コントリビュート はじめの一歩
yendoooo
1
140
SREが実現する開発者体験の革新
sansantech
PRO
0
130
テキスト解析で見る PyCon APAC 2025 セッション&スピーカートレンド分析
negi111111
0
250
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Designing Experiences People Love
moore
141
23k
Testing 201, or: Great Expectations
jmmastey
42
7.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.4k
Optimising Largest Contentful Paint
csswizardry
35
3.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
RailsConf 2023
tenderlove
29
1k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Site-Speed That Sticks
csswizardry
4
460
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11