Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
790
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
580
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.7k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
3
190
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
160
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
ハイパーパラメータチューニングって何をしているの
toridori_dev
0
140
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
200
AGIについてChatGPTに聞いてみた
blueb
0
130
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.6k
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
5
580
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
930
ISUCONに強くなるかもしれない日々の過ごしかた/Findy ISUCON 2024-11-14
fujiwara3
8
870
dev 補講: プロダクトセキュリティ / Product security overview
wa6sn
1
2.3k
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
What's in a price? How to price your products and services
michaelherold
243
12k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Speed Design
sergeychernyshev
24
610
The Language of Interfaces
destraynor
154
24k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
What's new in Ruby 2.0
geeforr
343
31k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11