Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
自律的なスケーリング手法FASTにおけるVPoEとしてのアカウンタビリティ / dev-productivity-con-2025
yoshikiiida
1
15k
成長し続けるアプリのためのテストと設計の関係、そして意思決定の記録。
sansantech
PRO
0
110
Lufthansa ®️ USA Contact Numbers: Complete 2025 Support Guide
lufthanahelpsupport
0
160
Delta airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
deltahelp
0
450
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
420
Connect 100+を支える技術
kanyamaguc
0
200
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
4
12k
生成AI時代の開発組織・技術・プロセス 〜 ログラスの挑戦と考察 〜
itohiro73
1
440
KiCadでPad on Viaの基板作ってみた
iotengineer22
0
290
OPENLOGI Company Profile
hr01
0
67k
使いたいMCPサーバーはWeb APIをラップして自分で作る #QiitaBash
bengo4com
0
1.7k
プライベートクラウドでの効率的な証明書配布戦略 / Efficient Certificate Distribution Strategy in Private Cloud
lycorptech_jp
PRO
0
110
Featured
See All Featured
Building an army of robots
kneath
306
45k
Designing for humans not robots
tammielis
253
25k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Making Projects Easy
brettharned
116
6.3k
A better future with KSS
kneath
238
17k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Done Done
chrislema
184
16k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Code Review Best Practice
trishagee
69
18k
Documentation Writing (for coders)
carmenintech
72
4.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
GitHub's CSS Performance
jonrohan
1031
460k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11