Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
830
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
660
Java 8 Lambda Expressions & Streams
newcircle
0
610
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
180
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
150
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
250
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
460
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
120
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
320
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
0
1.2k
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
360
初めてのDatabricks AI/BI Genie
taka_aki
0
150
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
280
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
740
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Context Engineering - Making Every Token Count
addyosmani
9
510
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Building Applications with DynamoDB
mza
96
6.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11