Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
730
インフラをつくるとはどういうことなのか、 あるいはPlatform Engineeringについて
nwiizo
5
2.6k
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
710
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
540
飲食店予約台帳を支えるインタラクティブ UI 設計と実装
siropaca
7
1.8k
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
700
モノレポ開発のエラー、誰が見る?Datadog で実現する適切なトリアージとエスカレーション
biwashi
6
800
開発組織のための セキュアコーディング研修の始め方
flatt_security
3
2.3k
The Future of SEO: The Impact of AI on Search
badams
0
190
ホワイトボードチャレンジ 説明&実行資料
ichimichi
0
130
プロセス改善による品質向上事例
tomasagi
2
2.5k
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
960
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.1k
Automating Front-end Workflow
addyosmani
1368
200k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Raft: Consensus for Rubyists
vanstee
137
6.8k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Unsuck your backbone
ammeep
669
57k
Why Our Code Smells
bkeepers
PRO
336
57k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11