Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
データエンジニアがクラシルでやりたいことの現在地
gappy50
3
680
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
1
340
人と生成AIの協調意思決定/Co‑decision making by people and generative AI
moriyuya
0
180
大規模組織にAIエージェントを迅速に導入するためのセキュリティの勘所 / AI agents for large-scale organizations
i35_267
6
330
MCPに潜むセキュリティリスクを考えてみる
milix_m
1
880
alecthomas/kong はいいぞ
fujiwara3
6
1.1k
分散トレーシングによる コネクティッドカーのデータ処理見える化の試み
thatsdone
0
270
経理出身PdMがAIプロダクト開発を_ハンズオンで学んだ話.pdf
shunsukenarita
1
230
Datasets for Critical Operations by Dataform
kimujun
0
120
2025-07-25 NOT A HOTEL TECH TALK ━ スマートホーム開発の最前線 ━ SOFTWARE
wakinchan
0
170
P2P ではじめる WebRTC のつまづきどころ
tnoho
1
270
生成AIによる情報システムへのインパクト
taka_aki
1
200
Featured
See All Featured
Producing Creativity
orderedlist
PRO
346
40k
Documentation Writing (for coders)
carmenintech
72
4.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Bash Introduction
62gerente
613
210k
Thoughts on Productivity
jonyablonski
69
4.8k
Scaling GitHub
holman
461
140k
Fireside Chat
paigeccino
37
3.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Statistics for Hackers
jakevdp
799
220k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11