Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説検定の例(補足資料)
Search
nonki1974
July 08, 2017
Science
0
190
仮説検定の例(補足資料)
講義で使った資料です
nonki1974
July 08, 2017
Tweet
Share
More Decks by nonki1974
See All by nonki1974
GTFS with Tidytransit package
nonki1974
0
310
TokyoR#84_Rexams
nonki1974
0
200
都道府県別焼き鳥屋ランキングの作成
nonki1974
1
890
Introduction to R
nonki1974
0
340
Introduction to dplyr
nonki1974
0
490
Introduction to ggplot2
nonki1974
1
500
Analyzing PSB tracks with R
nonki1974
0
590
introduction to fukuoka.R @ Fukuoka.LT
nonki1974
0
62
所要時間のヒートマップを作成する
nonki1974
0
540
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
150
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
410
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
120
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
340
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
390
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
110
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
370
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
機械学習 - DBSCAN
trycycle
PRO
0
1.1k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
590
データベース01: データベースを使わない世界
trycycle
PRO
1
830
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
The Pragmatic Product Professional
lauravandoore
36
7k
Bash Introduction
62gerente
615
210k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
It's Worth the Effort
3n
187
28k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Transcript
仮説検定の例(補足資料) @nonki1974
例|平成26年 国民健康・栄養調査 20歳~29歳の1日あたりのエネルギー摂取量 平均:1662kcal 標準偏差:480kcal 500 1000 1500 2000 2500
3000 0e+00 4e-04 8e-04 摂取カロリー[kcal] f(x) 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか?
例|10名をランダムに抽出 F女子大の学生の摂取カロリーが 全国と同じ分布 (1662, 4802) だとすると、 10名分の平均値の分布は , となるはずだ! 500
1000 1500 2000 2500 3000 0.0000 0.0010 0.0020 0.0030 摂取カロリー[kcal] f(x) 実際に調べたら1300kcalだった この分布の下では起こりにくい
起こりにくさの評価 1300kcal は 1662kcal から 362kcal 離れている 10名の平均が1662kcalから362kcal以上ずれる確率 362 362
実際に得た値 仮定した値 ത − 1662 ≥ 362 = 2 ത ≤ 1300 = 0.017 1.7% これは起こりにくい! p値(p-value)
どれくらい小さければ起こりにくいか 例えば5%にする → 有意水準 1662 − 1.96 × 480 10
1662 + 1.96 × 480 10 実際に得た値が (棄却域) に入ったら、 起こりにくいことが起こった!と判断しよう 棄却域 棄却域 判定 基準
起こりにくいことが起こらないケース 実際に調べたら1800kcalだった 10名の平均が1662kcalから138kcal以上ずれる確率 ത − 1662 ≥ 138 = 2
ത ≤ 1524 = 0.363 36.3% 1662kcalが正しくても それなりに起こり得る! Aさんの主張の根拠として不十分
問題設定の定式化 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか? F女子大の学生の摂取カロリーの平均を とし、 その分布は (, 2) とする
1 : ≠ 1662 対立仮説 0 : = 1662 帰無仮説 基準となる分布を作るための仮説
仮説検定の流れ 帰無仮説0 と対立仮説1 を設定する 帰無仮説0 の下で統計量の確率分布を求める 棄却域を設定し、統計量の実現値が 棄却域に入るかどうかを判定 統計量の実現値のp値を計算し、 有意水準よりも小さいかどうかを判定
1 2 3 3’ 3 3’ はいずれかでOK
判定結果の記述 4 0 の下では起こりにくいことが 起こったから・・・・ Case A 統計量の実現値が棄却域に入った もしくは p値が有意水準より小さい
を棄却する もしくは を採択する 0 の下では起こりうることが 起こったから・・・・ Case B 統計量の実現値が棄却域に入らず もしくは p値が有意水準より大きい を受容する もしくは 0 を棄却できない
対立仮説の種類 | 右側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より多いのではないか? 1 : > 1662
右側仮説 1662 + 1.645 × 480 10 棄却域 5%
対立仮説の種類 | 左側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より少ないのではないか? 1 : < 1662
左側仮説 1662 − 1.645 × 480 10 5% 棄却域