Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説検定の例(補足資料)
Search
nonki1974
July 08, 2017
Science
0
190
仮説検定の例(補足資料)
講義で使った資料です
nonki1974
July 08, 2017
Tweet
Share
More Decks by nonki1974
See All by nonki1974
GTFS with Tidytransit package
nonki1974
0
300
TokyoR#84_Rexams
nonki1974
0
200
都道府県別焼き鳥屋ランキングの作成
nonki1974
1
870
Introduction to R
nonki1974
0
330
Introduction to dplyr
nonki1974
0
460
Introduction to ggplot2
nonki1974
1
490
Analyzing PSB tracks with R
nonki1974
0
580
introduction to fukuoka.R @ Fukuoka.LT
nonki1974
0
59
所要時間のヒートマップを作成する
nonki1974
0
520
Other Decks in Science
See All in Science
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
110
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
Explanatory material
yuki1986
0
330
SciPyDataJapan 2025
schwalbe10
0
240
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
190
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
160
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
680
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
510
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.1k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Optimising Largest Contentful Paint
csswizardry
37
3.3k
It's Worth the Effort
3n
185
28k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Raft: Consensus for Rubyists
vanstee
140
7k
A designer walks into a library…
pauljervisheath
207
24k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Transcript
仮説検定の例(補足資料) @nonki1974
例|平成26年 国民健康・栄養調査 20歳~29歳の1日あたりのエネルギー摂取量 平均:1662kcal 標準偏差:480kcal 500 1000 1500 2000 2500
3000 0e+00 4e-04 8e-04 摂取カロリー[kcal] f(x) 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか?
例|10名をランダムに抽出 F女子大の学生の摂取カロリーが 全国と同じ分布 (1662, 4802) だとすると、 10名分の平均値の分布は , となるはずだ! 500
1000 1500 2000 2500 3000 0.0000 0.0010 0.0020 0.0030 摂取カロリー[kcal] f(x) 実際に調べたら1300kcalだった この分布の下では起こりにくい
起こりにくさの評価 1300kcal は 1662kcal から 362kcal 離れている 10名の平均が1662kcalから362kcal以上ずれる確率 362 362
実際に得た値 仮定した値 ത − 1662 ≥ 362 = 2 ത ≤ 1300 = 0.017 1.7% これは起こりにくい! p値(p-value)
どれくらい小さければ起こりにくいか 例えば5%にする → 有意水準 1662 − 1.96 × 480 10
1662 + 1.96 × 480 10 実際に得た値が (棄却域) に入ったら、 起こりにくいことが起こった!と判断しよう 棄却域 棄却域 判定 基準
起こりにくいことが起こらないケース 実際に調べたら1800kcalだった 10名の平均が1662kcalから138kcal以上ずれる確率 ത − 1662 ≥ 138 = 2
ത ≤ 1524 = 0.363 36.3% 1662kcalが正しくても それなりに起こり得る! Aさんの主張の根拠として不十分
問題設定の定式化 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか? F女子大の学生の摂取カロリーの平均を とし、 その分布は (, 2) とする
1 : ≠ 1662 対立仮説 0 : = 1662 帰無仮説 基準となる分布を作るための仮説
仮説検定の流れ 帰無仮説0 と対立仮説1 を設定する 帰無仮説0 の下で統計量の確率分布を求める 棄却域を設定し、統計量の実現値が 棄却域に入るかどうかを判定 統計量の実現値のp値を計算し、 有意水準よりも小さいかどうかを判定
1 2 3 3’ 3 3’ はいずれかでOK
判定結果の記述 4 0 の下では起こりにくいことが 起こったから・・・・ Case A 統計量の実現値が棄却域に入った もしくは p値が有意水準より小さい
を棄却する もしくは を採択する 0 の下では起こりうることが 起こったから・・・・ Case B 統計量の実現値が棄却域に入らず もしくは p値が有意水準より大きい を受容する もしくは 0 を棄却できない
対立仮説の種類 | 右側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より多いのではないか? 1 : > 1662
右側仮説 1662 + 1.645 × 480 10 棄却域 5%
対立仮説の種類 | 左側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より少ないのではないか? 1 : < 1662
左側仮説 1662 − 1.645 × 480 10 5% 棄却域