Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説検定の例(補足資料)
Search
nonki1974
July 08, 2017
Science
0
180
仮説検定の例(補足資料)
講義で使った資料です
nonki1974
July 08, 2017
Tweet
Share
More Decks by nonki1974
See All by nonki1974
GTFS with Tidytransit package
nonki1974
0
280
TokyoR#84_Rexams
nonki1974
0
190
都道府県別焼き鳥屋ランキングの作成
nonki1974
1
830
Introduction to R
nonki1974
0
320
Introduction to dplyr
nonki1974
0
430
Introduction to ggplot2
nonki1974
1
480
Analyzing PSB tracks with R
nonki1974
0
570
introduction to fukuoka.R @ Fukuoka.LT
nonki1974
0
57
所要時間のヒートマップを作成する
nonki1974
0
480
Other Decks in Science
See All in Science
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
530
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
位相的データ解析とその応用例
brainpadpr
1
780
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
380
Spectral Sparsification of Hypergraphs
tasusu
0
210
地表面抽出の方法であるSMRFについて紹介
kentaitakura
0
120
Mechanistic Interpretability の紹介
sohtakahashi
0
460
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
240
ベイズのはなし
techmathproject
0
370
Introduction to Image Processing: 2.Frequ
hachama
0
350
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
680
【人工衛星】座標変換についての説明
02hattori11sat03
0
140
Featured
See All Featured
Music & Morning Musume
bryan
46
6.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Faster Mobile Websites
deanohume
305
30k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
We Have a Design System, Now What?
morganepeng
51
7.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Art, The Web, and Tiny UX
lynnandtonic
298
20k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Making the Leap to Tech Lead
cromwellryan
133
9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
仮説検定の例(補足資料) @nonki1974
例|平成26年 国民健康・栄養調査 20歳~29歳の1日あたりのエネルギー摂取量 平均:1662kcal 標準偏差:480kcal 500 1000 1500 2000 2500
3000 0e+00 4e-04 8e-04 摂取カロリー[kcal] f(x) 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか?
例|10名をランダムに抽出 F女子大の学生の摂取カロリーが 全国と同じ分布 (1662, 4802) だとすると、 10名分の平均値の分布は , となるはずだ! 500
1000 1500 2000 2500 3000 0.0000 0.0010 0.0020 0.0030 摂取カロリー[kcal] f(x) 実際に調べたら1300kcalだった この分布の下では起こりにくい
起こりにくさの評価 1300kcal は 1662kcal から 362kcal 離れている 10名の平均が1662kcalから362kcal以上ずれる確率 362 362
実際に得た値 仮定した値 ത − 1662 ≥ 362 = 2 ത ≤ 1300 = 0.017 1.7% これは起こりにくい! p値(p-value)
どれくらい小さければ起こりにくいか 例えば5%にする → 有意水準 1662 − 1.96 × 480 10
1662 + 1.96 × 480 10 実際に得た値が (棄却域) に入ったら、 起こりにくいことが起こった!と判断しよう 棄却域 棄却域 判定 基準
起こりにくいことが起こらないケース 実際に調べたら1800kcalだった 10名の平均が1662kcalから138kcal以上ずれる確率 ത − 1662 ≥ 138 = 2
ത ≤ 1524 = 0.363 36.3% 1662kcalが正しくても それなりに起こり得る! Aさんの主張の根拠として不十分
問題設定の定式化 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか? F女子大の学生の摂取カロリーの平均を とし、 その分布は (, 2) とする
1 : ≠ 1662 対立仮説 0 : = 1662 帰無仮説 基準となる分布を作るための仮説
仮説検定の流れ 帰無仮説0 と対立仮説1 を設定する 帰無仮説0 の下で統計量の確率分布を求める 棄却域を設定し、統計量の実現値が 棄却域に入るかどうかを判定 統計量の実現値のp値を計算し、 有意水準よりも小さいかどうかを判定
1 2 3 3’ 3 3’ はいずれかでOK
判定結果の記述 4 0 の下では起こりにくいことが 起こったから・・・・ Case A 統計量の実現値が棄却域に入った もしくは p値が有意水準より小さい
を棄却する もしくは を採択する 0 の下では起こりうることが 起こったから・・・・ Case B 統計量の実現値が棄却域に入らず もしくは p値が有意水準より大きい を受容する もしくは 0 を棄却できない
対立仮説の種類 | 右側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より多いのではないか? 1 : > 1662
右側仮説 1662 + 1.645 × 480 10 棄却域 5%
対立仮説の種類 | 左側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より少ないのではないか? 1 : < 1662
左側仮説 1662 − 1.645 × 480 10 5% 棄却域