Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説検定の例(補足資料)
Search
nonki1974
July 08, 2017
Science
0
180
仮説検定の例(補足資料)
講義で使った資料です
nonki1974
July 08, 2017
Tweet
Share
More Decks by nonki1974
See All by nonki1974
GTFS with Tidytransit package
nonki1974
0
280
TokyoR#84_Rexams
nonki1974
0
200
都道府県別焼き鳥屋ランキングの作成
nonki1974
1
840
Introduction to R
nonki1974
0
320
Introduction to dplyr
nonki1974
0
440
Introduction to ggplot2
nonki1974
1
480
Analyzing PSB tracks with R
nonki1974
0
570
introduction to fukuoka.R @ Fukuoka.LT
nonki1974
0
58
所要時間のヒートマップを作成する
nonki1974
0
500
Other Decks in Science
See All in Science
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
130
Pericarditis Comic
camkdraws
0
1.5k
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
220
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
180
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1k
サメのはなし / How Sharks are born
naospon
0
2.4k
How were Quaternion discovered
kinakomoti321
2
1.2k
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
410
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
240510 COGNAC LabChat
kazh
0
180
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
110
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
150
Featured
See All Featured
Scaling GitHub
holman
459
140k
GraphQLとの向き合い方2022年版
quramy
44
14k
Six Lessons from altMBA
skipperchong
27
3.6k
A Tale of Four Properties
chriscoyier
158
23k
Statistics for Hackers
jakevdp
797
220k
Adopting Sorbet at Scale
ufuk
75
9.2k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
580
Building a Scalable Design System with Sketch
lauravandoore
461
33k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Become a Pro
speakerdeck
PRO
26
5.2k
Transcript
仮説検定の例(補足資料) @nonki1974
例|平成26年 国民健康・栄養調査 20歳~29歳の1日あたりのエネルギー摂取量 平均:1662kcal 標準偏差:480kcal 500 1000 1500 2000 2500
3000 0e+00 4e-04 8e-04 摂取カロリー[kcal] f(x) 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか?
例|10名をランダムに抽出 F女子大の学生の摂取カロリーが 全国と同じ分布 (1662, 4802) だとすると、 10名分の平均値の分布は , となるはずだ! 500
1000 1500 2000 2500 3000 0.0000 0.0010 0.0020 0.0030 摂取カロリー[kcal] f(x) 実際に調べたら1300kcalだった この分布の下では起こりにくい
起こりにくさの評価 1300kcal は 1662kcal から 362kcal 離れている 10名の平均が1662kcalから362kcal以上ずれる確率 362 362
実際に得た値 仮定した値 ത − 1662 ≥ 362 = 2 ത ≤ 1300 = 0.017 1.7% これは起こりにくい! p値(p-value)
どれくらい小さければ起こりにくいか 例えば5%にする → 有意水準 1662 − 1.96 × 480 10
1662 + 1.96 × 480 10 実際に得た値が (棄却域) に入ったら、 起こりにくいことが起こった!と判断しよう 棄却域 棄却域 判定 基準
起こりにくいことが起こらないケース 実際に調べたら1800kcalだった 10名の平均が1662kcalから138kcal以上ずれる確率 ത − 1662 ≥ 138 = 2
ത ≤ 1524 = 0.363 36.3% 1662kcalが正しくても それなりに起こり得る! Aさんの主張の根拠として不十分
問題設定の定式化 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均と異なるのではないか? F女子大の学生の摂取カロリーの平均を とし、 その分布は (, 2) とする
1 : ≠ 1662 対立仮説 0 : = 1662 帰無仮説 基準となる分布を作るための仮説
仮説検定の流れ 帰無仮説0 と対立仮説1 を設定する 帰無仮説0 の下で統計量の確率分布を求める 棄却域を設定し、統計量の実現値が 棄却域に入るかどうかを判定 統計量の実現値のp値を計算し、 有意水準よりも小さいかどうかを判定
1 2 3 3’ 3 3’ はいずれかでOK
判定結果の記述 4 0 の下では起こりにくいことが 起こったから・・・・ Case A 統計量の実現値が棄却域に入った もしくは p値が有意水準より小さい
を棄却する もしくは を採択する 0 の下では起こりうることが 起こったから・・・・ Case B 統計量の実現値が棄却域に入らず もしくは p値が有意水準より大きい を受容する もしくは 0 を棄却できない
対立仮説の種類 | 右側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より多いのではないか? 1 : > 1662
右側仮説 1662 + 1.645 × 480 10 棄却域 5%
対立仮説の種類 | 左側仮説 研究者Aさんの主張 F女子大の学生の摂取カロリーは 全国の平均より少ないのではないか? 1 : < 1662
左側仮説 1662 − 1.645 × 480 10 5% 棄却域