Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルウェアを機械学習する前に
Search
Yuma Kurogome
February 13, 2016
Programming
3
1.7k
マルウェアを機械学習する前に
Kaggle - Malware Classification Challenge勉強会 connpass.com/event/25007/ 発表資料
Yuma Kurogome
February 13, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
28k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3.1k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.3k
Linear Obfuscation to Drive angr Angry
ntddk
4
870
CAPTCHAとボットの共進化
ntddk
2
1.2k
Peeling Onions
ntddk
7
3.7k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.4k
Other Decks in Programming
See All in Programming
r2-image-worker
yusukebe
1
170
[堅牢.py #1] テストを書かない研究者に送る、最初にテストを書く実験コード入門 / Let's start your ML project by writing tests
shunk031
11
5.3k
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
39
13k
Agentに至る道 〜なぜLLMは自動でコードを書けるようになったのか〜
mackee
5
1.9k
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
180
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
220
仕様がそのままテストになる!Javaで始める振る舞い駆動開発
ohmori_yusuke
8
4.6k
物流DXを支える“意味”の設計:セマンティックレイヤーとAIで挑むデータ基盤/登壇資料(飯塚 大地)
hacobu
PRO
0
110
複数チーム並行開発下でのコード移行アプローチ ~手動 Codemod から「生成AI 活用」への進化
andpad
0
180
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
14
13k
DartASTとその活用
sotaatos
2
140
しっかり学ぶ java.lang.*
nagise
1
410
Featured
See All Featured
Navigating Team Friction
lara
190
16k
What's in a price? How to price your products and services
michaelherold
246
12k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.1k
Writing Fast Ruby
sferik
630
62k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
GraphQLとの向き合い方2022年版
quramy
49
14k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
340
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Embracing the Ebb and Flow
colly
88
4.9k
Transcript
@ntddk Kaggle - Malware Classification Challenge 2016.02.13 1
• http://ntddk.github.io/ • 2
3
4
Kaggle 5 https://www.kaggle.com/
6 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
7 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
8 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
9 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
10 http://blog.kaggle.com/
11 x η g a b c x …
12 x η g a b c x …
13 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
14 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
15 • • • •
16 https://www.av-test.org/en/statistics/malware/
17 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf
18 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf http://www.mcafee.com/jp/resources/reports/rp-threats-predictions-2016.pdf
19 • KERNEL32!VirtualAllocStub • KERNEL32!VirtualProtectStub • KERNEL32!OpenProcessStub • KERNEL32!OpenThreadStub •
…
20 CSEC: MWS: http://www.iwsec.org/mws/2015/about.html
21 https://www.kaggle.com/c/malware-classification/data 16
22 • https://virusshare.com/ • http://malware-traffic-analysis.net/
23 • • • •
24 • • • • API PE
25 https://github.com/corkami/
26 • • • • • •
27 #include <windows.h> typedef int (WINAPI *LPFNMESSAGEBOXW)(HWND, LPCWSTR, LPCWSTR, UINT);
int main() { HMODULE hmod = LoadLibrary(TEXT("user32.dll")); LPFNMESSAGEBOXW lpfnMessageBoxW = (LPFNMESSAGEBOXW)GetProcAddress(hmod, "MessageBoxW"); lpfnMessageBoxW(NULL, L"Hello, world!", L"Test", MB_OK); FreeLibrary(hmod); return 0; } •
28 { "category": "registry", "status": true, "return": "0x00000000", "timestamp": "2015-05-24
02:46:50,773", "thread_id": "3220", "repeated": 0, "api": "NtOpenKey", "arguments": [ { "name": "DesiredAccess", "value": "33554432" }, { "name": "KeyHandle", "value": "0x00000154" }, { "name": "ObjectAttributes", "value": "¥¥REGISTRY¥¥USER¥¥S-1-5-21-916742657-1382504153-4155998892-1001" } ], "id": 83 },
29 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
30 • AdaBoost, Gradient Boosting • Kaggle
DAF 31 Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham, A
scalable multi-level feature extraction technique to detect malicious executables, Information Systems Frontiers, Vol.10, Issue.1, pp.33-45, 2008. 16 DAF: Derived Assembly Features BFS: Binary N-gram Features