Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルウェアを機械学習する前に
Search
Yuma Kurogome
February 13, 2016
Programming
3
1.7k
マルウェアを機械学習する前に
Kaggle - Malware Classification Challenge勉強会 connpass.com/event/25007/ 発表資料
Yuma Kurogome
February 13, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
28k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3.1k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.3k
Linear Obfuscation to Drive angr Angry
ntddk
4
880
CAPTCHAとボットの共進化
ntddk
2
1.2k
Peeling Onions
ntddk
7
3.7k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.4k
Other Decks in Programming
See All in Programming
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
170
ゆくKotlin くるRust
exoego
1
180
Cell-Based Architecture
larchanjo
0
150
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.4k
ゲームの物理 剛体編
fadis
0
390
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
510
認証・認可の基本を学ぼう後編
kouyuume
0
260
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
210
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
150
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
140
SQL Server 2025 LT
odashinsuke
0
100
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Become a Pro
speakerdeck
PRO
31
5.8k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
99
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Site-Speed That Sticks
csswizardry
13
1k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
75
Navigating Weather and Climate Data
rabernat
0
58
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
73
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
260
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Transcript
@ntddk Kaggle - Malware Classification Challenge 2016.02.13 1
• http://ntddk.github.io/ • 2
3
4
Kaggle 5 https://www.kaggle.com/
6 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
7 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
8 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
9 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
10 http://blog.kaggle.com/
11 x η g a b c x …
12 x η g a b c x …
13 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
14 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
15 • • • •
16 https://www.av-test.org/en/statistics/malware/
17 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf
18 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf http://www.mcafee.com/jp/resources/reports/rp-threats-predictions-2016.pdf
19 • KERNEL32!VirtualAllocStub • KERNEL32!VirtualProtectStub • KERNEL32!OpenProcessStub • KERNEL32!OpenThreadStub •
…
20 CSEC: MWS: http://www.iwsec.org/mws/2015/about.html
21 https://www.kaggle.com/c/malware-classification/data 16
22 • https://virusshare.com/ • http://malware-traffic-analysis.net/
23 • • • •
24 • • • • API PE
25 https://github.com/corkami/
26 • • • • • •
27 #include <windows.h> typedef int (WINAPI *LPFNMESSAGEBOXW)(HWND, LPCWSTR, LPCWSTR, UINT);
int main() { HMODULE hmod = LoadLibrary(TEXT("user32.dll")); LPFNMESSAGEBOXW lpfnMessageBoxW = (LPFNMESSAGEBOXW)GetProcAddress(hmod, "MessageBoxW"); lpfnMessageBoxW(NULL, L"Hello, world!", L"Test", MB_OK); FreeLibrary(hmod); return 0; } •
28 { "category": "registry", "status": true, "return": "0x00000000", "timestamp": "2015-05-24
02:46:50,773", "thread_id": "3220", "repeated": 0, "api": "NtOpenKey", "arguments": [ { "name": "DesiredAccess", "value": "33554432" }, { "name": "KeyHandle", "value": "0x00000154" }, { "name": "ObjectAttributes", "value": "¥¥REGISTRY¥¥USER¥¥S-1-5-21-916742657-1382504153-4155998892-1001" } ], "id": 83 },
29 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
30 • AdaBoost, Gradient Boosting • Kaggle
DAF 31 Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham, A
scalable multi-level feature extraction technique to detect malicious executables, Information Systems Frontiers, Vol.10, Issue.1, pp.33-45, 2008. 16 DAF: Derived Assembly Features BFS: Binary N-gram Features