Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルウェアを機械学習する前に
Search
Yuma Kurogome
February 13, 2016
Programming
3
1.6k
マルウェアを機械学習する前に
Kaggle - Malware Classification Challenge勉強会 connpass.com/event/25007/ 発表資料
Yuma Kurogome
February 13, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
27k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3.1k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.3k
Linear Obfuscation to Drive angr Angry
ntddk
4
860
CAPTCHAとボットの共進化
ntddk
2
1.2k
Peeling Onions
ntddk
7
3.7k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.4k
Other Decks in Programming
See All in Programming
OSS開発者という働き方
andpad
5
1.7k
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
350
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
130
🔨 小さなビルドシステムを作る
momeemt
4
690
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
22
5.9k
奥深くて厄介な「改行」と仲良くなる20分
oguemon
1
570
Kiroで始めるAI-DLC
kaonash
2
630
Compose Multiplatform × AI で作る、次世代アプリ開発支援ツールの設計と実装
thagikura
0
170
GitHubとGitLabとAWS CodePipelineでCI/CDを組み比べてみた
satoshi256kbyte
4
250
Android 16 × Jetpack Composeで縦書きテキストエディタを作ろう / Vertical Text Editor with Compose on Android 16
cc4966
2
270
AI時代のUIはどこへ行く?
yusukebe
18
9.1k
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
780
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Gamification - CAS2011
davidbonilla
81
5.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
GraphQLとの向き合い方2022年版
quramy
49
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Designing Experiences People Love
moore
142
24k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Documentation Writing (for coders)
carmenintech
74
5k
Transcript
@ntddk Kaggle - Malware Classification Challenge 2016.02.13 1
• http://ntddk.github.io/ • 2
3
4
Kaggle 5 https://www.kaggle.com/
6 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
7 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
8 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
9 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
10 http://blog.kaggle.com/
11 x η g a b c x …
12 x η g a b c x …
13 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
14 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
15 • • • •
16 https://www.av-test.org/en/statistics/malware/
17 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf
18 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf http://www.mcafee.com/jp/resources/reports/rp-threats-predictions-2016.pdf
19 • KERNEL32!VirtualAllocStub • KERNEL32!VirtualProtectStub • KERNEL32!OpenProcessStub • KERNEL32!OpenThreadStub •
…
20 CSEC: MWS: http://www.iwsec.org/mws/2015/about.html
21 https://www.kaggle.com/c/malware-classification/data 16
22 • https://virusshare.com/ • http://malware-traffic-analysis.net/
23 • • • •
24 • • • • API PE
25 https://github.com/corkami/
26 • • • • • •
27 #include <windows.h> typedef int (WINAPI *LPFNMESSAGEBOXW)(HWND, LPCWSTR, LPCWSTR, UINT);
int main() { HMODULE hmod = LoadLibrary(TEXT("user32.dll")); LPFNMESSAGEBOXW lpfnMessageBoxW = (LPFNMESSAGEBOXW)GetProcAddress(hmod, "MessageBoxW"); lpfnMessageBoxW(NULL, L"Hello, world!", L"Test", MB_OK); FreeLibrary(hmod); return 0; } •
28 { "category": "registry", "status": true, "return": "0x00000000", "timestamp": "2015-05-24
02:46:50,773", "thread_id": "3220", "repeated": 0, "api": "NtOpenKey", "arguments": [ { "name": "DesiredAccess", "value": "33554432" }, { "name": "KeyHandle", "value": "0x00000154" }, { "name": "ObjectAttributes", "value": "¥¥REGISTRY¥¥USER¥¥S-1-5-21-916742657-1382504153-4155998892-1001" } ], "id": 83 },
29 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
30 • AdaBoost, Gradient Boosting • Kaggle
DAF 31 Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham, A
scalable multi-level feature extraction technique to detect malicious executables, Information Systems Frontiers, Vol.10, Issue.1, pp.33-45, 2008. 16 DAF: Derived Assembly Features BFS: Binary N-gram Features