Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルウェアを機械学習する前に
Search
Yuma Kurogome
February 13, 2016
Programming
3
1.7k
マルウェアを機械学習する前に
Kaggle - Malware Classification Challenge勉強会 connpass.com/event/25007/ 発表資料
Yuma Kurogome
February 13, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
28k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3.1k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.3k
Linear Obfuscation to Drive angr Angry
ntddk
4
880
CAPTCHAとボットの共進化
ntddk
2
1.2k
Peeling Onions
ntddk
7
3.7k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.4k
Other Decks in Programming
See All in Programming
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
240
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
150
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
ゆくKotlin くるRust
exoego
1
180
Patterns of Patterns
denyspoltorak
0
410
AtCoder Conference 2025
shindannin
0
880
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
310
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.2k
Featured
See All Featured
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
130
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Statistics for Hackers
jakevdp
799
230k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
92
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Fireside Chat
paigeccino
41
3.8k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
110
Darren the Foodie - Storyboard
khoart
PRO
0
2.1k
Transcript
@ntddk Kaggle - Malware Classification Challenge 2016.02.13 1
• http://ntddk.github.io/ • 2
3
4
Kaggle 5 https://www.kaggle.com/
6 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
7 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
8 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
9 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
10 http://blog.kaggle.com/
11 x η g a b c x …
12 x η g a b c x …
13 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
14 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
15 • • • •
16 https://www.av-test.org/en/statistics/malware/
17 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf
18 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf http://www.mcafee.com/jp/resources/reports/rp-threats-predictions-2016.pdf
19 • KERNEL32!VirtualAllocStub • KERNEL32!VirtualProtectStub • KERNEL32!OpenProcessStub • KERNEL32!OpenThreadStub •
…
20 CSEC: MWS: http://www.iwsec.org/mws/2015/about.html
21 https://www.kaggle.com/c/malware-classification/data 16
22 • https://virusshare.com/ • http://malware-traffic-analysis.net/
23 • • • •
24 • • • • API PE
25 https://github.com/corkami/
26 • • • • • •
27 #include <windows.h> typedef int (WINAPI *LPFNMESSAGEBOXW)(HWND, LPCWSTR, LPCWSTR, UINT);
int main() { HMODULE hmod = LoadLibrary(TEXT("user32.dll")); LPFNMESSAGEBOXW lpfnMessageBoxW = (LPFNMESSAGEBOXW)GetProcAddress(hmod, "MessageBoxW"); lpfnMessageBoxW(NULL, L"Hello, world!", L"Test", MB_OK); FreeLibrary(hmod); return 0; } •
28 { "category": "registry", "status": true, "return": "0x00000000", "timestamp": "2015-05-24
02:46:50,773", "thread_id": "3220", "repeated": 0, "api": "NtOpenKey", "arguments": [ { "name": "DesiredAccess", "value": "33554432" }, { "name": "KeyHandle", "value": "0x00000154" }, { "name": "ObjectAttributes", "value": "¥¥REGISTRY¥¥USER¥¥S-1-5-21-916742657-1382504153-4155998892-1001" } ], "id": 83 },
29 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
30 • AdaBoost, Gradient Boosting • Kaggle
DAF 31 Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham, A
scalable multi-level feature extraction technique to detect malicious executables, Information Systems Frontiers, Vol.10, Issue.1, pp.33-45, 2008. 16 DAF: Derived Assembly Features BFS: Binary N-gram Features