Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
結合トピックモデル
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kento Nozawa
March 29, 2016
Research
0
1.1k
結合トピックモデル
2016年3月29日に『トピックモデルによる統計的潜在意味解析』
読書会ファイナル ~佐藤一誠先生スペシャル~のLTで発表しました
Kento Nozawa
March 29, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
180
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
640
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
230
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
210
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
520
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
850
NLP Tutorial; word representation learning
nzw0301
0
230
Analyzing Centralities of Embedded Nodes
nzw0301
0
200
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
Remote sensing × Multi-modal meta survey
satai
4
710
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
310
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
290
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Prompt Engineering for Job Search
mfonobong
0
160
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Rails Girls Zürich Keynote
gr2m
96
14k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Testing 201, or: Great Expectations
jmmastey
46
8k
Transcript
݁߹τϐοΫϞσϧ ʰτϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳʱ ಡॻձϑΝΠφϧ ~ࠤ౻Ұઌੜεϖγϟϧ~ ݈ਓ (@nzw0301) 2016-03-29
ࣗݾհ ͡Ί·ͯ͠ ݈ਓ (@nzw0301) य़͔ΒஜେͰM1 ڵຯ • ػցֶशɼNLPɼάϥϑɼDL
݁߹τϐοΫϞσϧ จॻσʔλͱରԠ͢ΔใΛ߹Θֶͤͯश • ຊޠͱӳޠ • Ϩγϐͱࡐྉ • ୯ޠͱͦͷࢺ ࢀߟɿ௨ৗͷLDAͷάϥϑΟΧϧϞσϧ 3
D N2 N1 K 2 1 w2 i w1 i ✓ ↵ 1 z1 i z2 i 2 D N K wi ✓ ↵ zi
z ͷαϯϓϦϯάࣜ • 3ষp55ʹैͬͯಋग़Մೳ • ৄ͘͠ http://nzw0301.github.io/2016/02/jointTopicModelsEquation • ҎԼͷ͔ࣜΒGibbs SamplingͷࣜΛٻΊΔ
ࢀߟɿ௨ৗͷLDA 4 p(z1 d,i = k|w1 d,i = v, W1 \d,i , W2, Z1 \d,i , Z2, ↵, 1, 2) p(z1 d,i = k|w1 d,i = v, W1 \d,i , Z1 \d,i , ↵, 1)
ࣜมܗͷ݁Ռ • ݁߹τϐοΫϞσϧͷαϯϓϦϯάࣜ • φ௨ৗͷLDAͱಉ͡ • θʹ͍ͭͯɼؚ·ΕΔ߲͕ิॿใͷ͚ͩ૿͑Δ ࢀߟɿ௨ৗͷLDAͷαϯϓϦϯάࣜ 5 n1
k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + n2 d,k + ↵k P k0 (n1 d,k0,\d,i + n2 d,k0 + ↵k0 ) n1 k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + ↵k P k0 (n1 d,k0,\d,i + ↵k0 )
࣮ߦྫ • ର༁ίʔύεΛఆͨ͠؆୯ͳྫ • ݴޠ͕ҧͬͯτϐοΫڞ௨ http://nzw0301.github.io/2016/02/jointTopicModelsEquation ࣮ɿLDAͷαϯϓϧࣜͰ͏౷ܭྔΛྻʹ 6
ࢀߟจݙ • ؠా ۩࣏. τϐοΫϞσϧ. ߨஊࣾ. 2015. (MLPػցֶशϓϩϑΣογϣφϧγϦʔζ). • ࠤ౻
Ұ. τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳ. ίϩφࣾ. 2015. (ࣗવݴޠॲཧγ Ϧʔζ, 8). • David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith and Andrew McCallum. 2009. Polylingual Topic Models. in EMNLP. 7