Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
結合トピックモデル
Search
Kento Nozawa
March 29, 2016
Research
0
1.1k
結合トピックモデル
2016年3月29日に『トピックモデルによる統計的潜在意味解析』
読書会ファイナル ~佐藤一誠先生スペシャル~のLTで発表しました
Kento Nozawa
March 29, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
180
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
630
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
220
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
200
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
520
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
840
NLP Tutorial; word representation learning
nzw0301
0
230
Analyzing Centralities of Embedded Nodes
nzw0301
0
190
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
単施設でできる臨床研究の考え方
shuntaros
0
3.4k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
620
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
430
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
220
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.1k
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
230
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
18k
財務諸表監査のための逐次検定
masakat0
0
220
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
460
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
490
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
110
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.9k
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
RailsConf 2023
tenderlove
30
1.3k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
We Have a Design System, Now What?
morganepeng
54
8k
The Spectacular Lies of Maps
axbom
PRO
1
410
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
140
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Transcript
݁߹τϐοΫϞσϧ ʰτϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳʱ ಡॻձϑΝΠφϧ ~ࠤ౻Ұઌੜεϖγϟϧ~ ݈ਓ (@nzw0301) 2016-03-29
ࣗݾհ ͡Ί·ͯ͠ ݈ਓ (@nzw0301) य़͔ΒஜେͰM1 ڵຯ • ػցֶशɼNLPɼάϥϑɼDL
݁߹τϐοΫϞσϧ จॻσʔλͱରԠ͢ΔใΛ߹Θֶͤͯश • ຊޠͱӳޠ • Ϩγϐͱࡐྉ • ୯ޠͱͦͷࢺ ࢀߟɿ௨ৗͷLDAͷάϥϑΟΧϧϞσϧ 3
D N2 N1 K 2 1 w2 i w1 i ✓ ↵ 1 z1 i z2 i 2 D N K wi ✓ ↵ zi
z ͷαϯϓϦϯάࣜ • 3ষp55ʹैͬͯಋग़Մೳ • ৄ͘͠ http://nzw0301.github.io/2016/02/jointTopicModelsEquation • ҎԼͷ͔ࣜΒGibbs SamplingͷࣜΛٻΊΔ
ࢀߟɿ௨ৗͷLDA 4 p(z1 d,i = k|w1 d,i = v, W1 \d,i , W2, Z1 \d,i , Z2, ↵, 1, 2) p(z1 d,i = k|w1 d,i = v, W1 \d,i , Z1 \d,i , ↵, 1)
ࣜมܗͷ݁Ռ • ݁߹τϐοΫϞσϧͷαϯϓϦϯάࣜ • φ௨ৗͷLDAͱಉ͡ • θʹ͍ͭͯɼؚ·ΕΔ߲͕ิॿใͷ͚ͩ૿͑Δ ࢀߟɿ௨ৗͷLDAͷαϯϓϦϯάࣜ 5 n1
k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + n2 d,k + ↵k P k0 (n1 d,k0,\d,i + n2 d,k0 + ↵k0 ) n1 k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + ↵k P k0 (n1 d,k0,\d,i + ↵k0 )
࣮ߦྫ • ର༁ίʔύεΛఆͨ͠؆୯ͳྫ • ݴޠ͕ҧͬͯτϐοΫڞ௨ http://nzw0301.github.io/2016/02/jointTopicModelsEquation ࣮ɿLDAͷαϯϓϧࣜͰ͏౷ܭྔΛྻʹ 6
ࢀߟจݙ • ؠా ۩࣏. τϐοΫϞσϧ. ߨஊࣾ. 2015. (MLPػցֶशϓϩϑΣογϣφϧγϦʔζ). • ࠤ౻
Ұ. τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳ. ίϩφࣾ. 2015. (ࣗવݴޠॲཧγ Ϧʔζ, 8). • David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith and Andrew McCallum. 2009. Polylingual Topic Models. in EMNLP. 7