Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
結合トピックモデル
Search
Kento Nozawa
March 29, 2016
Research
0
1.1k
結合トピックモデル
2016年3月29日に『トピックモデルによる統計的潜在意味解析』
読書会ファイナル ~佐藤一誠先生スペシャル~のLTで発表しました
Kento Nozawa
March 29, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
160
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
610
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
190
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
180
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
480
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
810
NLP Tutorial; word representation learning
nzw0301
0
210
Analyzing Centralities of Embedded Nodes
nzw0301
0
160
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.8k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
730
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
220
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
540
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
260
Sosiaalisen median katsaus 03/2025 + tekoäly
hponka
0
1.3k
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
240
数理最適化と機械学習の融合
mickey_kubo
15
8.9k
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
3.7k
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Building Adaptive Systems
keathley
43
2.6k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Agile that works and the tools we love
rasmusluckow
329
21k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Docker and Python
trallard
44
3.5k
Transcript
݁߹τϐοΫϞσϧ ʰτϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳʱ ಡॻձϑΝΠφϧ ~ࠤ౻Ұઌੜεϖγϟϧ~ ݈ਓ (@nzw0301) 2016-03-29
ࣗݾհ ͡Ί·ͯ͠ ݈ਓ (@nzw0301) य़͔ΒஜେͰM1 ڵຯ • ػցֶशɼNLPɼάϥϑɼDL
݁߹τϐοΫϞσϧ จॻσʔλͱରԠ͢ΔใΛ߹Θֶͤͯश • ຊޠͱӳޠ • Ϩγϐͱࡐྉ • ୯ޠͱͦͷࢺ ࢀߟɿ௨ৗͷLDAͷάϥϑΟΧϧϞσϧ 3
D N2 N1 K 2 1 w2 i w1 i ✓ ↵ 1 z1 i z2 i 2 D N K wi ✓ ↵ zi
z ͷαϯϓϦϯάࣜ • 3ষp55ʹैͬͯಋग़Մೳ • ৄ͘͠ http://nzw0301.github.io/2016/02/jointTopicModelsEquation • ҎԼͷ͔ࣜΒGibbs SamplingͷࣜΛٻΊΔ
ࢀߟɿ௨ৗͷLDA 4 p(z1 d,i = k|w1 d,i = v, W1 \d,i , W2, Z1 \d,i , Z2, ↵, 1, 2) p(z1 d,i = k|w1 d,i = v, W1 \d,i , Z1 \d,i , ↵, 1)
ࣜมܗͷ݁Ռ • ݁߹τϐοΫϞσϧͷαϯϓϦϯάࣜ • φ௨ৗͷLDAͱಉ͡ • θʹ͍ͭͯɼؚ·ΕΔ߲͕ิॿใͷ͚ͩ૿͑Δ ࢀߟɿ௨ৗͷLDAͷαϯϓϦϯάࣜ 5 n1
k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + n2 d,k + ↵k P k0 (n1 d,k0,\d,i + n2 d,k0 + ↵k0 ) n1 k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + ↵k P k0 (n1 d,k0,\d,i + ↵k0 )
࣮ߦྫ • ର༁ίʔύεΛఆͨ͠؆୯ͳྫ • ݴޠ͕ҧͬͯτϐοΫڞ௨ http://nzw0301.github.io/2016/02/jointTopicModelsEquation ࣮ɿLDAͷαϯϓϧࣜͰ͏౷ܭྔΛྻʹ 6
ࢀߟจݙ • ؠా ۩࣏. τϐοΫϞσϧ. ߨஊࣾ. 2015. (MLPػցֶशϓϩϑΣογϣφϧγϦʔζ). • ࠤ౻
Ұ. τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳ. ίϩφࣾ. 2015. (ࣗવݴޠॲཧγ Ϧʔζ, 8). • David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith and Andrew McCallum. 2009. Polylingual Topic Models. in EMNLP. 7