Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
結合トピックモデル
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kento Nozawa
March 29, 2016
Research
0
1.1k
結合トピックモデル
2016年3月29日に『トピックモデルによる統計的潜在意味解析』
読書会ファイナル ~佐藤一誠先生スペシャル~のLTで発表しました
Kento Nozawa
March 29, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
180
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
640
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
230
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
210
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
520
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
850
NLP Tutorial; word representation learning
nzw0301
0
230
Analyzing Centralities of Embedded Nodes
nzw0301
0
200
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
490
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
POI: Proof of Identity
katsyoshi
0
140
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
270
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
290
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
710
Featured
See All Featured
Done Done
chrislema
186
16k
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Making Projects Easy
brettharned
120
6.6k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Documentation Writing (for coders)
carmenintech
77
5.3k
Optimizing for Happiness
mojombo
379
71k
Transcript
݁߹τϐοΫϞσϧ ʰτϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳʱ ಡॻձϑΝΠφϧ ~ࠤ౻Ұઌੜεϖγϟϧ~ ݈ਓ (@nzw0301) 2016-03-29
ࣗݾհ ͡Ί·ͯ͠ ݈ਓ (@nzw0301) य़͔ΒஜେͰM1 ڵຯ • ػցֶशɼNLPɼάϥϑɼDL
݁߹τϐοΫϞσϧ จॻσʔλͱରԠ͢ΔใΛ߹Θֶͤͯश • ຊޠͱӳޠ • Ϩγϐͱࡐྉ • ୯ޠͱͦͷࢺ ࢀߟɿ௨ৗͷLDAͷάϥϑΟΧϧϞσϧ 3
D N2 N1 K 2 1 w2 i w1 i ✓ ↵ 1 z1 i z2 i 2 D N K wi ✓ ↵ zi
z ͷαϯϓϦϯάࣜ • 3ষp55ʹैͬͯಋग़Մೳ • ৄ͘͠ http://nzw0301.github.io/2016/02/jointTopicModelsEquation • ҎԼͷ͔ࣜΒGibbs SamplingͷࣜΛٻΊΔ
ࢀߟɿ௨ৗͷLDA 4 p(z1 d,i = k|w1 d,i = v, W1 \d,i , W2, Z1 \d,i , Z2, ↵, 1, 2) p(z1 d,i = k|w1 d,i = v, W1 \d,i , Z1 \d,i , ↵, 1)
ࣜมܗͷ݁Ռ • ݁߹τϐοΫϞσϧͷαϯϓϦϯάࣜ • φ௨ৗͷLDAͱಉ͡ • θʹ͍ͭͯɼؚ·ΕΔ߲͕ิॿใͷ͚ͩ૿͑Δ ࢀߟɿ௨ৗͷLDAͷαϯϓϦϯάࣜ 5 n1
k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + n2 d,k + ↵k P k0 (n1 d,k0,\d,i + n2 d,k0 + ↵k0 ) n1 k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + ↵k P k0 (n1 d,k0,\d,i + ↵k0 )
࣮ߦྫ • ର༁ίʔύεΛఆͨ͠؆୯ͳྫ • ݴޠ͕ҧͬͯτϐοΫڞ௨ http://nzw0301.github.io/2016/02/jointTopicModelsEquation ࣮ɿLDAͷαϯϓϧࣜͰ͏౷ܭྔΛྻʹ 6
ࢀߟจݙ • ؠా ۩࣏. τϐοΫϞσϧ. ߨஊࣾ. 2015. (MLPػցֶशϓϩϑΣογϣφϧγϦʔζ). • ࠤ౻
Ұ. τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳ. ίϩφࣾ. 2015. (ࣗવݴޠॲཧγ Ϧʔζ, 8). • David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith and Andrew McCallum. 2009. Polylingual Topic Models. in EMNLP. 7