Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
結合トピックモデル
Search
Kento Nozawa
March 29, 2016
Research
0
1.1k
結合トピックモデル
2016年3月29日に『トピックモデルによる統計的潜在意味解析』
読書会ファイナル ~佐藤一誠先生スペシャル~のLTで発表しました
Kento Nozawa
March 29, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
170
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
610
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
200
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
190
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
490
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
820
NLP Tutorial; word representation learning
nzw0301
0
220
Analyzing Centralities of Embedded Nodes
nzw0301
0
170
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
450
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
940
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.5k
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
300
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
520
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
110
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Into the Great Unknown - MozCon
thekraken
40
2k
Making Projects Easy
brettharned
117
6.4k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
Context Engineering - Making Every Token Count
addyosmani
3
62
Code Review Best Practice
trishagee
71
19k
A Tale of Four Properties
chriscoyier
160
23k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Building Applications with DynamoDB
mza
96
6.6k
What's in a price? How to price your products and services
michaelherold
246
12k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Transcript
݁߹τϐοΫϞσϧ ʰτϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳʱ ಡॻձϑΝΠφϧ ~ࠤ౻Ұઌੜεϖγϟϧ~ ݈ਓ (@nzw0301) 2016-03-29
ࣗݾհ ͡Ί·ͯ͠ ݈ਓ (@nzw0301) य़͔ΒஜେͰM1 ڵຯ • ػցֶशɼNLPɼάϥϑɼDL
݁߹τϐοΫϞσϧ จॻσʔλͱରԠ͢ΔใΛ߹Θֶͤͯश • ຊޠͱӳޠ • Ϩγϐͱࡐྉ • ୯ޠͱͦͷࢺ ࢀߟɿ௨ৗͷLDAͷάϥϑΟΧϧϞσϧ 3
D N2 N1 K 2 1 w2 i w1 i ✓ ↵ 1 z1 i z2 i 2 D N K wi ✓ ↵ zi
z ͷαϯϓϦϯάࣜ • 3ষp55ʹैͬͯಋग़Մೳ • ৄ͘͠ http://nzw0301.github.io/2016/02/jointTopicModelsEquation • ҎԼͷ͔ࣜΒGibbs SamplingͷࣜΛٻΊΔ
ࢀߟɿ௨ৗͷLDA 4 p(z1 d,i = k|w1 d,i = v, W1 \d,i , W2, Z1 \d,i , Z2, ↵, 1, 2) p(z1 d,i = k|w1 d,i = v, W1 \d,i , Z1 \d,i , ↵, 1)
ࣜมܗͷ݁Ռ • ݁߹τϐοΫϞσϧͷαϯϓϦϯάࣜ • φ௨ৗͷLDAͱಉ͡ • θʹ͍ͭͯɼؚ·ΕΔ߲͕ิॿใͷ͚ͩ૿͑Δ ࢀߟɿ௨ৗͷLDAͷαϯϓϦϯάࣜ 5 n1
k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + n2 d,k + ↵k P k0 (n1 d,k0,\d,i + n2 d,k0 + ↵k0 ) n1 k,v,\d,i + v P v0 (n1 k,v0,\d,i + v0 ) n1 d,k,\d,i + ↵k P k0 (n1 d,k0,\d,i + ↵k0 )
࣮ߦྫ • ର༁ίʔύεΛఆͨ͠؆୯ͳྫ • ݴޠ͕ҧͬͯτϐοΫڞ௨ http://nzw0301.github.io/2016/02/jointTopicModelsEquation ࣮ɿLDAͷαϯϓϧࣜͰ͏౷ܭྔΛྻʹ 6
ࢀߟจݙ • ؠా ۩࣏. τϐοΫϞσϧ. ߨஊࣾ. 2015. (MLPػցֶशϓϩϑΣογϣφϧγϦʔζ). • ࠤ౻
Ұ. τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯղੳ. ίϩφࣾ. 2015. (ࣗવݴޠॲཧγ Ϧʔζ, 8). • David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith and Andrew McCallum. 2009. Polylingual Topic Models. in EMNLP. 7