TensorFlow User Group Summit SSA
Une Session sur TensorFlow Recommenders- une bibliothèque de composants que vous pouvez utiliser pour créer, vous l'avez deviné, des systèmes de recommandation.
on ratings. ratings = tfds.load("movielens/100k-ratings", split="train") # Movie features. movies = tfds.load("movielens/100k-movies", split="train") # The user and movie models can be arbitrary Keras models. user_model = tf.keras.Sequential([ tf.keras.layers.Embedding(1000, 32), tf.keras.layers.Dense(64, activation=”relu”) ]) movie_model = tf.keras.layers.Embedding(1700, 64)
on ratings. ratings = tfds.load("movielens/100k-ratings", split="train") # Movie features. movies = tfds.load("movielens/100k-movies", split="train") # The user and movie models can be arbitrary Keras models. user_model = tf.keras.Sequential([ tf.keras.layers.Embedding(1000, 32), tf.keras.layers.Dense(64, activation=”relu”) ]) movie_model = tf.keras.layers.Embedding(1700, 64) for x in ratings.take(1).as_numpy_iterator(): pprint.pprint(x)
will optimize for retrieving the best movies. task=tfrs.tasks.Retrieval( # Model retrieval accuracy measured across all recommendable movies. metrics=tfrs.metrics.FactorizedTopK( candidates=movies.batch(128).map(movie_model) )) )
on GitHub → https://goo.gle/3ef3tYy Building a retrieval model using TensorFlow Recommenders → https://goo.gle/3yUAqkK https://www.tensorflow.org/guide/ https://www.tensorflow.org/tutorials Question & Bugs: https://github.com/tensorflow/tensorflow/issues Merci