Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bidirectional Inter-dependencies of Subjec...
Search
Shohei Okada
May 01, 2014
Research
0
140
文献紹介:Bidirectional Inter-dependencies of Subjective Expressions and Targets and their Value for Joint Model
動画
http://youtu.be/TgoJsgT2CsA?list=UUhwtfJp9l_thFbFDWXoGWEQ
Shohei Okada
May 01, 2014
Tweet
Share
More Decks by Shohei Okada
See All by Shohei Okada
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
3
1.1k
パスワードのハッシュ、ソルトってなに? - What is hash and salt for password?
okashoi
3
150
設計の考え方 - インターフェースと腐敗防止層編 #phpconfuk / Interface and Anti Corruption Layer
okashoi
10
3.3k
"config" ってなんだ? / What is "config"?
okashoi
0
1k
ファイル先頭の use の意味、説明できますか? 〜PHP の namespace と autoloading の関係を正しく理解しよう〜 / namespace and autoloading in php
okashoi
3
1.4k
MySQL のインデックスの種類をおさらいしよう! / overviewing indexes in MySQL
okashoi
0
770
PHP における静的解析(あるいはそもそも静的解析とは) / #phpcondo_yasai static analysis for PHP
okashoi
1
530
【PHPカンファレンス沖縄 2023】素朴で考慮漏れのある PHP コードをテストコードとともに補強していく(ライブコーディング補足資料) / #phpcon_okinawa 2023 livecoding supplementary material
okashoi
3
1.9k
その説明、コードコメントに書く?コミットメッセージに書く? プルリクエストに書く? - #phpconfuk 2023
okashoi
15
5.1k
Other Decks in Research
See All in Research
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1.1k
Vision Language Modelと完全自動運転AIの最新動向
tsubasashi
0
250
複数データセットを用いた動作認識
yuyay
0
120
The many faces of AI and the role of mathematics
gpeyre
1
1.7k
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
130
CUNY DHI_Lightning Talks_2024
digitalfellow
0
520
o1 pro mode の調査レポート
smorce
0
130
Whoisの闇
hirachan
3
310
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
230
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
240
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
430
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
350
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
41
2.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
A Philosophy of Restraint
colly
203
16k
Designing Experiences People Love
moore
140
23k
Git: the NoSQL Database
bkeepers
PRO
428
65k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Fireside Chat
paigeccino
35
3.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Optimizing for Happiness
mojombo
377
70k
Why Our Code Smells
bkeepers
PRO
336
57k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Transcript
文献紹介 2014/05/01 長岡技術科学大学 自然言語処理研究室 岡田 正平
紹介する文献 2
文献情報 Roman Klinger and Philipp Cimiano. Bidirectional Inter-dependencies of Subjective
Expressions and Targets and their Value for Joint Model. Proceedings of the 51st Annual Meeting of the ACL, pp. 848-854. 2013 3
概要 • Opinion mining における subjective expression と target の相互依存性を扱う
– 既存研究は1方向しか扱っていない • 双方向の関係を扱うsubjective expression お よび target を抽出するモデルの提案 4
背景 5
背景 sentiment analysis や opinion mining subjective term, polarity,
targetの同定 e.g.) I like the low weight of the camera. subjective: “like” target: “low weight” polarity: positive • これらは相互依存関係にあるのでは? 6
扱う問題 • subject termについての知識が完全な場合と 不完全な場合の比較 • targetについての知識が完全な場合のsubject termの予測への影響 • targetについての知識が不完全な場合はどう
か(学習したモデルからの予測) 7
IMPERATIVELY DEFINED FACTOR GRAPH 8
Factor Graph • factor と variable からなる2部グラフ • 多変数関数の factorize
に対応 9 wikipedia “factor graph” より転載 1 , 2 , 3 = 1 1 2 1 , 2 3 1 , 2 4 (2 , 3 )
Factor Graph • ベイズ推定の応用(誤り訂正など)に用い られるらしい • NLPではn-gram言語モデルとか? 10
Imperatively Defined Factor Graph • variable に 入力変数集合 x と出力変数集合
y がある • 入出力変数の部分集合 x , y を引数とする関 数 x , y が factor Ψ • 言い換えれば,(x , y )から得られる特徴量が factor? 11
Imperatively Defined Factor Graph A factor template consists of parameters
{ }, sufficient statistic functions { }, and a description of an arbitrary relationship between variables, yielding a set of tuples x , y (元の文献より引用) • ここ(特に description が何か)の理解が不十分 12
Imperatively Defined Factor Graph • 確率分布が次式で表現される • y x =
1 (x) ∏ ∏ exp(∑ (x , y )) 𝑘=1 x,y ∈ ∈T • 全 factor とパラメータの線形結合 13
抽出モデル 14
Model | variable • variable は subjective term と target
• 複数トークンからなる表現に対応すべく span として表現 • = , , , はトークン列中の span の左端・右端の位置 ∈ {target, subjective} 15
Model | factor template • factor template は大きく分けて2種類 – single
span template – inter-span template 16
Model | single span template • トークンのPOSタグ (POS) • トークンの文字列(小文字)
(W) • トークンのPOSタグ&文字列の組み合わせ (POS-W) • span内のPOSタグ列 (POS-SEQ) 17
Model | inter-span template • 以下の3つと,single span template の組合わせ –
target の span が subjective term に隣接する名詞を 含むか ([NO-]CLOSE-NOUN-x) – 他クラスの span が同じ文中に存在するか ([NO- ]BOTH-x) – target と subject 間に単一の係り受け関係があるか ([NO-]ONE-EDGE-x) 18
例(元の文献より転載) 19
Model | サンプリング • MCMC法により推定を行う • 1回のサンプルごとに各 span は class
を変え られるか,1トークン分伸ばすか縮められる 20
実験 21
対象データ • J.D. Power and Associates Sentiment Corpora – 車とカメラについてのblog
– subjective term と target についてアノテート済 • Twitter data set – Stanford parser を用いないため,ONE-EDGEの 特徴量は使えない 22
実験項目 1. subjective term の推定→ target の推定 2. target の推定→
subjective term の推定 3. 完全な subjective term の知識を利用した target の推定 4. 完全な target の知識を利用した subjective term の推定 23
実験結果 | camera data set 24
実験結果 | car data set 25
実験結果 | Twitter data set 26
まとめ • subjective term と target は相互に依存して いることが認められた • その影響の仕方は非対称的だった
• パイプライン的に処理する場合には,先に subjective term を推定した方がいい 27