Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bidirectional Inter-dependencies of Subjec...
Search
Shohei Okada
May 01, 2014
Research
0
140
文献紹介:Bidirectional Inter-dependencies of Subjective Expressions and Targets and their Value for Joint Model
動画
http://youtu.be/TgoJsgT2CsA?list=UUhwtfJp9l_thFbFDWXoGWEQ
Shohei Okada
May 01, 2014
Tweet
Share
More Decks by Shohei Okada
See All by Shohei Okada
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
510
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
2
1.7k
パスワードのハッシュ、ソルトってなに? - What is hash and salt for password?
okashoi
3
270
設計の考え方 - インターフェースと腐敗防止層編 #phpconfuk / Interface and Anti Corruption Layer
okashoi
11
4.6k
"config" ってなんだ? / What is "config"?
okashoi
0
1.5k
ファイル先頭の use の意味、説明できますか? 〜PHP の namespace と autoloading の関係を正しく理解しよう〜 / namespace and autoloading in php
okashoi
4
1.8k
MySQL のインデックスの種類をおさらいしよう! / overviewing indexes in MySQL
okashoi
0
1k
PHP における静的解析(あるいはそもそも静的解析とは) / #phpcondo_yasai static analysis for PHP
okashoi
1
740
【PHPカンファレンス沖縄 2023】素朴で考慮漏れのある PHP コードをテストコードとともに補強していく(ライブコーディング補足資料) / #phpcon_okinawa 2023 livecoding supplementary material
okashoi
3
2k
Other Decks in Research
See All in Research
snlp2025_prevent_llm_spikes
takase
0
390
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
390
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
150
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
550
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
超高速データサイエンス
matsui_528
1
170
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2k
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
270
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
720
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
760
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
380
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Raft: Consensus for Rubyists
vanstee
140
7.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
140
Designing Experiences People Love
moore
142
24k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Typedesign – Prime Four
hannesfritz
42
2.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
640
Transcript
文献紹介 2014/05/01 長岡技術科学大学 自然言語処理研究室 岡田 正平
紹介する文献 2
文献情報 Roman Klinger and Philipp Cimiano. Bidirectional Inter-dependencies of Subjective
Expressions and Targets and their Value for Joint Model. Proceedings of the 51st Annual Meeting of the ACL, pp. 848-854. 2013 3
概要 • Opinion mining における subjective expression と target の相互依存性を扱う
– 既存研究は1方向しか扱っていない • 双方向の関係を扱うsubjective expression お よび target を抽出するモデルの提案 4
背景 5
背景 sentiment analysis や opinion mining  subjective term, polarity,
targetの同定 e.g.) I like the low weight of the camera. subjective: “like” target: “low weight” polarity: positive • これらは相互依存関係にあるのでは? 6
扱う問題 • subject termについての知識が完全な場合と 不完全な場合の比較 • targetについての知識が完全な場合のsubject termの予測への影響 • targetについての知識が不完全な場合はどう
か(学習したモデルからの予測) 7
IMPERATIVELY DEFINED FACTOR GRAPH 8
Factor Graph • factor と variable からなる2部グラフ • 多変数関数の factorize
に対応 9 wikipedia “factor graph” より転載 1 , 2 , 3 = 1 1 2 1 , 2 3 1 , 2 4 (2 , 3 )
Factor Graph • ベイズ推定の応用(誤り訂正など)に用い られるらしい • NLPではn-gram言語モデルとか? 10
Imperatively Defined Factor Graph • variable に 入力変数集合 x と出力変数集合
y がある • 入出力変数の部分集合 x , y を引数とする関 数 x , y が factor Ψ • 言い換えれば,(x , y )から得られる特徴量が factor? 11
Imperatively Defined Factor Graph A factor template consists of parameters
{ }, sufficient statistic functions { }, and a description of an arbitrary relationship between variables, yielding a set of tuples x , y (元の文献より引用) • ここ(特に description が何か)の理解が不十分 12
Imperatively Defined Factor Graph • 確率分布が次式で表現される • y x =
1 (x) ∏ ∏ exp(∑ (x , y )) 𝑘=1 x,y ∈ ∈T • 全 factor とパラメータの線形結合 13
抽出モデル 14
Model | variable • variable は subjective term と target
• 複数トークンからなる表現に対応すべく span として表現 • = , , , はトークン列中の span の左端・右端の位置 ∈ {target, subjective} 15
Model | factor template • factor template は大きく分けて2種類 – single
span template – inter-span template 16
Model | single span template • トークンのPOSタグ (POS) • トークンの文字列(小文字)
(W) • トークンのPOSタグ&文字列の組み合わせ (POS-W) • span内のPOSタグ列 (POS-SEQ) 17
Model | inter-span template • 以下の3つと,single span template の組合わせ –
target の span が subjective term に隣接する名詞を 含むか ([NO-]CLOSE-NOUN-x) – 他クラスの span が同じ文中に存在するか ([NO- ]BOTH-x) – target と subject 間に単一の係り受け関係があるか ([NO-]ONE-EDGE-x) 18
例(元の文献より転載) 19
Model | サンプリング • MCMC法により推定を行う • 1回のサンプルごとに各 span は class
を変え られるか,1トークン分伸ばすか縮められる 20
実験 21
対象データ • J.D. Power and Associates Sentiment Corpora – 車とカメラについてのblog
– subjective term と target についてアノテート済 • Twitter data set – Stanford parser を用いないため,ONE-EDGEの 特徴量は使えない 22
実験項目 1. subjective term の推定→ target の推定 2. target の推定→
subjective term の推定 3. 完全な subjective term の知識を利用した target の推定 4. 完全な target の知識を利用した subjective term の推定 23
実験結果 | camera data set 24
実験結果 | car data set 25
実験結果 | Twitter data set 26
まとめ • subjective term と target は相互に依存して いることが認められた • その影響の仕方は非対称的だった
• パイプライン的に処理する場合には,先に subjective term を推定した方がいい 27