Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Hardness-Aware Deep Metric Learning [CVPR ...
Search
hyodo
June 10, 2019
Technology
0
530
論文紹介 Hardness-Aware Deep Metric Learning [CVPR 2019]
研究室のゼミで"Deep Metric Learning"というタイトルで発表した資料の一部になります。ご指摘や議論等お待ちしております。
Twitter @onysuke
hyodo
June 10, 2019
Tweet
Share
More Decks by hyodo
See All by hyodo
The Impact of Advertising along the Conversion Funnel
onysuke
2
1.6k
Can offline stores drive online sales?
onysuke
0
1.5k
SizeFlags: Reducing Size and Fit Related Returns in Fashion E-Commerce
onysuke
0
890
意思決定のための機械学習
onysuke
1
1k
Mixture of Expertsに関する文献調査
onysuke
1
2k
Other Decks in Technology
See All in Technology
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
260
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
320
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
220
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
220
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
0
130
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
350
コンパウンド組織のCRE #cre_meetup
layerx
PRO
1
290
Dify on AWS 環境構築手順
yosse95ai
0
170
Observability — Extending Into Incident Response
nari_ex
1
580
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.2k
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
1.9k
Retrospectiveを振り返ろう
nakasho
0
130
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
431
66k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Agile that works and the tools we love
rasmusluckow
331
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Building Adaptive Systems
keathley
44
2.8k
The Pragmatic Product Professional
lauravandoore
36
7k
Transcript
)BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH $7130SBM 8FO[IBP ;IFOH ;IBPEPOH $IFO +JXFO -V +JF ;IPV
%FQBSUNFOUPG"VUPNBUJPO 5TJOHIVB6OJWFSTJUZ $IJOB FUD 1
֓ཁ 2 ɾ/FHBUJWFTBNQMFͷқΛௐ͢ΔϑϨʔϜϫʔΫ )%.- )BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH ΛఏҊ /FHBUJWFTBNQMFͷқΛજࡏ্ۭؒͷઢܗิؒʹΑΓௐ ֶशঢ়گʹదͳ͠͞ͷOFHBUJWFαϯϓϧΛੜ͢Δ
എܠ • /FHBUJWFTBNQMJOHॏཁͳ • ఏҊ͞Ε͍ͯΔख๏ͷଟ͘ɼֶशΛଅਐ͢Δ ͠ ͍ /FHBUJWFΛͲ͏બ͢Δ͔ʹযΛ͍͋ͯͯͨ ‑ Ұ෦ͷTBNQMFΛऔΓଓ͚Δ͜ͱʹͳΓɼજࡏۭؒͷେ
ہతͳܗΛଊ͑Δ͜ͱ͕Ͱ͖͍ͯͳ͍ PWFSGJUUJOH 3
4 ఏҊख๏֓આ ᶃ )BSEBXBSFGFBUVSFTZOUIFTJT ΞϯΧʔʹ͚ۙͮͨOFHBUJWF ! Λੜ ᶄ )BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT
ੜͨ͠OFHBUJWF ! Λ ͷϥϕϧͱಉ͡ʹͳΔΑ͏ʹඍௐ ᶃ ᶄ ! " = "
5 .BOJGPME $MBTT" ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
6 .BOJGPME $MBTT" : → GFBUVSFTQBDF͔Β FNCFEEJOHTQBDF NFUSJDTQBDF ʹࣹӨ ఏҊख๏֓આ
ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
7 .BOJGPME $MBTT" & ! = + " ! −
" ∈ [0,1] ҎԼͷઢܗิؒʹΑΓ ʹ͚ۙͮͨΑΓ͍͠ ̂ Λੜ ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
8 Hard-aware feature .BOJGPME $MBTT" l% !ͱ!͕ಉϥϕϧz อূ͞Ε͍ͯͳ͍ ˣ !ͱಉϥϕϧʹ
ͳΔΑ͏ͳ( !ΛϚοϓ ఏҊख๏֓આ ᶄ)BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT : → .BOJGPME $MBTT#
ఏҊϑϨʔϜϫʔΫ )%.- 9 : → : → .FUSJDOFUXPSL "VHNFOUFS HLP(Hardness-and-Label-Preserving)
Generator Network "VHNFOUFS )-1(FOFSBUPS/FUXPSL
"VHNFOUFS 10 : → : → .FUSJDOFUXPSL "VHNFOUPS & !
= + " ! − , "∈ 0,1 … (1) " = + + 1 − # , ! , , ! > # 1 , , ! ≤ # , ∈ 0,1 … (2) ; " ∈ $! $ ," , 1 ͱͯ͠ , ! = ! − ' % ! = + [ , ! + 1 − #] "! $ ," , , ! > # … (3) ' ! = * + [ ! " #!"# , ! + 1 − ! " #!"# $] ! − , ! , , ! > $ ! , , ! ≤ $ … (4) % = 0ͷͱ͖' ! = ͱͳͬͯ͠·͏ʜ ʹ Λೖ͢Δͱ = ! # $%&'ͱͯ͠
"VHNFOUFSֶशঢ়گʹԠͨ͡қͷOFHBUJWFΛੜ ; % # = ' + [ # $
%&'( , # + 1 − # $ %&'( &] # − , # , , # > & # , , # ≤ & … (4) '() ʜͭલͷFQPDIͷ"WFSBHFNFUSJDMPTT FY5SJQMFUMPTT 11 @AB খ େ # $ %&'( 0 1 % ! = + $! $ ," (! − ) % ! = ! % !ͷқ easy hard MPTTͷେ͖͞ ֶशঢ়گ ʹԠͯ͡ੜ͢ΔOFHBUJWFͷқΛௐ
)-1(FOFSBUPS/FUXPSL 12 : → : → "VHNFOUPS HLP(Hardness-and-Label-Preserving) Generator Network
9:; = <:=>; + λ?>@A = − B C + λ?>@A () , ) l% #ͱ#͕ಉϥϕϧzอূ͞Ε͍ͯͳ͍ ⇒ #ͱಉϥϕϧʹͳΔΑ͏ͳE #ΛϚοϓ HFOFSBUPS: → PCKFDUJWFGVODUJPO )-1(FOFSBUPS /FUXPSL &OD %FD ͱͯ͠ͷ੍߲ ݩͷϥϕϧ Λอূ͢Δ
.FUSJDOFUXPSL PCKFDUJWFGVODUJPO .FUSJDOFUXPSL 13 : → : → .FUSJDOFUXPSL "VHNFOUFS
HLP(Hardness-and-Label-Preserving) Generator Network EFGHIJ = ! K L!"#E + 1 − ! K L!"# MNO = ! K L!"#() + 1 − ! K L!"# (; ) NFUSJDMPTT FY5SJQMFUMPTT /QBJSMPTT ݩͷσʔλର ੜͨ͠σʔλର ৴པͰ͖Δ 㱺 ੜͨ͠σʔλର ৴པͰ͖ͳ͍ 㱺 ݩͷσʔλର HFOFSBUPS ͕ ͷNFUSJDMPTTʹॏ͖Λ͓͘
$6#σʔληοτ ௗͷը૾ छྨ ܭ ຕ 5SBJO ຕ छྨ 5FTU
ຕ छྨ 5SBJOͱ5FTUʹಉ͡Ϋϥεͷը૾ଘࡏ͠ͳ͍ 㱺 ;FSPTIPUTFUUJOH 14
࣮ݧઃఆ DMVTUFSJOHSFUSJFWBMUBTL 15 $MVTUFSJOHUBTL ධՁࢦඪ /.* ਖ਼نԽ૬ޓใྔ ' 3FDBMM!, 5FTU
5SBJO Clustering task Retrieval task 3FUSJFWBMUBTL ֤UFTUը૾ RVFSZ ʹରͯ͠ ,ίۙͷΛநग़͠ɼ ಉ͡Ϋϥε͕ଐ͍ͯ͠Ε TDPSFFMTFTDPSF
.FUSJDMPTTͷछྨʹΑΒͣ )%.-Ͱࣝผతͳಛྔ͕ಘΒΕͨ 16
!"#$ ֶ͕शʹ͓͍ͯॏཁͳཁૉͰ͋Δ 17 HFJQO ͳ͠ͰϕʔεϥΠϯΛ্ճΔ 㱺 *+,- ͚ͩͰݱ࣮తͳಛදݱͷϚοϐϯά͕ՄೳͰ͋ͬͨͱߟ͑ΒΕΔ
ΫϥεͷมԽ എܠ ࢹ র໌ FUD ΫϥεؒͷΘ͔ͣͳҧ͍ ௗͷ༷ 18 ʹରॲ