Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Hardness-Aware Deep Metric Learning [CVPR ...
Search
hyodo
June 10, 2019
Technology
0
540
論文紹介 Hardness-Aware Deep Metric Learning [CVPR 2019]
研究室のゼミで"Deep Metric Learning"というタイトルで発表した資料の一部になります。ご指摘や議論等お待ちしております。
Twitter @onysuke
hyodo
June 10, 2019
Tweet
Share
More Decks by hyodo
See All by hyodo
The Impact of Advertising along the Conversion Funnel
onysuke
2
1.7k
Can offline stores drive online sales?
onysuke
0
1.6k
SizeFlags: Reducing Size and Fit Related Returns in Fashion E-Commerce
onysuke
0
940
意思決定のための機械学習
onysuke
1
1k
Mixture of Expertsに関する文献調査
onysuke
1
2.1k
Other Decks in Technology
See All in Technology
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
850
Exadata Fleet Update
oracle4engineer
PRO
0
1.1k
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
610
AI駆動開発を事業のコアに置く
tasukuonizawa
1
370
Agile Leadership Summit Keynote 2026
m_seki
1
670
Context Engineeringの取り組み
nutslove
0
380
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
450
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.6k
Featured
See All Featured
KATA
mclloyd
PRO
34
15k
Context Engineering - Making Every Token Count
addyosmani
9
670
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
The Limits of Empathy - UXLibs8
cassininazir
1
220
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The SEO identity crisis: Don't let AI make you average
varn
0
330
How to Think Like a Performance Engineer
csswizardry
28
2.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Making the Leap to Tech Lead
cromwellryan
135
9.7k
HDC tutorial
michielstock
1
390
Transcript
)BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH $7130SBM 8FO[IBP ;IFOH ;IBPEPOH $IFO +JXFO -V +JF ;IPV
%FQBSUNFOUPG"VUPNBUJPO 5TJOHIVB6OJWFSTJUZ $IJOB FUD 1
֓ཁ 2 ɾ/FHBUJWFTBNQMFͷқΛௐ͢ΔϑϨʔϜϫʔΫ )%.- )BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH ΛఏҊ /FHBUJWFTBNQMFͷқΛજࡏ্ۭؒͷઢܗิؒʹΑΓௐ ֶशঢ়گʹదͳ͠͞ͷOFHBUJWFαϯϓϧΛੜ͢Δ
എܠ • /FHBUJWFTBNQMJOHॏཁͳ • ఏҊ͞Ε͍ͯΔख๏ͷଟ͘ɼֶशΛଅਐ͢Δ ͠ ͍ /FHBUJWFΛͲ͏બ͢Δ͔ʹযΛ͍͋ͯͯͨ ‑ Ұ෦ͷTBNQMFΛऔΓଓ͚Δ͜ͱʹͳΓɼજࡏۭؒͷେ
ہతͳܗΛଊ͑Δ͜ͱ͕Ͱ͖͍ͯͳ͍ PWFSGJUUJOH 3
4 ఏҊख๏֓આ ᶃ )BSEBXBSFGFBUVSFTZOUIFTJT ΞϯΧʔʹ͚ۙͮͨOFHBUJWF ! Λੜ ᶄ )BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT
ੜͨ͠OFHBUJWF ! Λ ͷϥϕϧͱಉ͡ʹͳΔΑ͏ʹඍௐ ᶃ ᶄ ! " = "
5 .BOJGPME $MBTT" ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
6 .BOJGPME $MBTT" : → GFBUVSFTQBDF͔Β FNCFEEJOHTQBDF NFUSJDTQBDF ʹࣹӨ ఏҊख๏֓આ
ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
7 .BOJGPME $MBTT" & ! = + " ! −
" ∈ [0,1] ҎԼͷઢܗิؒʹΑΓ ʹ͚ۙͮͨΑΓ͍͠ ̂ Λੜ ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
8 Hard-aware feature .BOJGPME $MBTT" l% !ͱ!͕ಉϥϕϧz อূ͞Ε͍ͯͳ͍ ˣ !ͱಉϥϕϧʹ
ͳΔΑ͏ͳ( !ΛϚοϓ ఏҊख๏֓આ ᶄ)BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT : → .BOJGPME $MBTT#
ఏҊϑϨʔϜϫʔΫ )%.- 9 : → : → .FUSJDOFUXPSL "VHNFOUFS HLP(Hardness-and-Label-Preserving)
Generator Network "VHNFOUFS )-1(FOFSBUPS/FUXPSL
"VHNFOUFS 10 : → : → .FUSJDOFUXPSL "VHNFOUPS & !
= + " ! − , "∈ 0,1 … (1) " = + + 1 − # , ! , , ! > # 1 , , ! ≤ # , ∈ 0,1 … (2) ; " ∈ $! $ ," , 1 ͱͯ͠ , ! = ! − ' % ! = + [ , ! + 1 − #] "! $ ," , , ! > # … (3) ' ! = * + [ ! " #!"# , ! + 1 − ! " #!"# $] ! − , ! , , ! > $ ! , , ! ≤ $ … (4) % = 0ͷͱ͖' ! = ͱͳͬͯ͠·͏ʜ ʹ Λೖ͢Δͱ = ! # $%&'ͱͯ͠
"VHNFOUFSֶशঢ়گʹԠͨ͡қͷOFHBUJWFΛੜ ; % # = ' + [ # $
%&'( , # + 1 − # $ %&'( &] # − , # , , # > & # , , # ≤ & … (4) '() ʜͭલͷFQPDIͷ"WFSBHFNFUSJDMPTT FY5SJQMFUMPTT 11 @AB খ େ # $ %&'( 0 1 % ! = + $! $ ," (! − ) % ! = ! % !ͷқ easy hard MPTTͷେ͖͞ ֶशঢ়گ ʹԠͯ͡ੜ͢ΔOFHBUJWFͷқΛௐ
)-1(FOFSBUPS/FUXPSL 12 : → : → "VHNFOUPS HLP(Hardness-and-Label-Preserving) Generator Network
9:; = <:=>; + λ?>@A = − B C + λ?>@A () , ) l% #ͱ#͕ಉϥϕϧzอূ͞Ε͍ͯͳ͍ ⇒ #ͱಉϥϕϧʹͳΔΑ͏ͳE #ΛϚοϓ HFOFSBUPS: → PCKFDUJWFGVODUJPO )-1(FOFSBUPS /FUXPSL &OD %FD ͱͯ͠ͷ੍߲ ݩͷϥϕϧ Λอূ͢Δ
.FUSJDOFUXPSL PCKFDUJWFGVODUJPO .FUSJDOFUXPSL 13 : → : → .FUSJDOFUXPSL "VHNFOUFS
HLP(Hardness-and-Label-Preserving) Generator Network EFGHIJ = ! K L!"#E + 1 − ! K L!"# MNO = ! K L!"#() + 1 − ! K L!"# (; ) NFUSJDMPTT FY5SJQMFUMPTT /QBJSMPTT ݩͷσʔλର ੜͨ͠σʔλର ৴པͰ͖Δ 㱺 ੜͨ͠σʔλର ৴པͰ͖ͳ͍ 㱺 ݩͷσʔλର HFOFSBUPS ͕ ͷNFUSJDMPTTʹॏ͖Λ͓͘
$6#σʔληοτ ௗͷը૾ छྨ ܭ ຕ 5SBJO ຕ छྨ 5FTU
ຕ छྨ 5SBJOͱ5FTUʹಉ͡Ϋϥεͷը૾ଘࡏ͠ͳ͍ 㱺 ;FSPTIPUTFUUJOH 14
࣮ݧઃఆ DMVTUFSJOHSFUSJFWBMUBTL 15 $MVTUFSJOHUBTL ධՁࢦඪ /.* ਖ਼نԽ૬ޓใྔ ' 3FDBMM!, 5FTU
5SBJO Clustering task Retrieval task 3FUSJFWBMUBTL ֤UFTUը૾ RVFSZ ʹରͯ͠ ,ίۙͷΛநग़͠ɼ ಉ͡Ϋϥε͕ଐ͍ͯ͠Ε TDPSFFMTFTDPSF
.FUSJDMPTTͷछྨʹΑΒͣ )%.-Ͱࣝผతͳಛྔ͕ಘΒΕͨ 16
!"#$ ֶ͕शʹ͓͍ͯॏཁͳཁૉͰ͋Δ 17 HFJQO ͳ͠ͰϕʔεϥΠϯΛ্ճΔ 㱺 *+,- ͚ͩͰݱ࣮తͳಛදݱͷϚοϐϯά͕ՄೳͰ͋ͬͨͱߟ͑ΒΕΔ
ΫϥεͷมԽ എܠ ࢹ র໌ FUD ΫϥεؒͷΘ͔ͣͳҧ͍ ௗͷ༷ 18 ʹରॲ