Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Александр Чистяков, Построение о...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
OpenTalks.AI
February 15, 2019
Science
1
680
OpenTalks.AI - Александр Чистяков, Построение общего глубокого представления исполняемых файлов для поиска новых угроз и расследования киберпреступлений
OpenTalks.AI
February 15, 2019
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
490
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
440
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
380
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
520
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
150
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
390
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
340
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
450
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
480
Other Decks in Science
See All in Science
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
170
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
530
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
510
My Little Monster
juzishuu
0
560
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
28k
MCMCのR-hatは分散分析である
moricup
0
590
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
6
21k
機械学習 - SVM
trycycle
PRO
1
980
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
Algorithmic Aspects of Quiver Representations
tasusu
0
190
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.5k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
A better future with KSS
kneath
240
18k
Technical Leadership for Architectural Decision Making
baasie
2
250
Visualization
eitanlees
150
17k
GitHub's CSS Performance
jonrohan
1032
470k
Crafting Experiences
bethany
1
55
A Modern Web Designer's Workflow
chriscoyier
698
190k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
RailsConf 2023
tenderlove
30
1.3k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
460
Transcript
1 Constructing shared deep representation of executable files to search
for new threats and cybercrime investigations Alexander Chistyakov Senior Research-Developer, Detection Methods Analysis, Kaspersky Lab
2 File processing route (known threat) Benign file Malicious file
Download file Check file’s reputation Static analysis Dynamic analysis Execution artefacts Raw file artefacts Status, popularity, sources, … Label obtained?
File processing route (modified known threat) Download file Check file’s
reputation Static analysis Dynamic analysis Execution artefacts Raw file artefacts Status, popularity, sources, … ML detection model Benign file Malicious file Label obtained?
File processing route (new unknown threat) Download file Check file’s
reputation Static analysis Dynamic analysis Execution artefacts Raw file artefacts Status, popularity, sources, … ML detection model Expert decision Benign file Malicious file
Manual data labeling Expert decision Benign file Malicious file Dynamic
analysis
6 World 2 Vec
Latent representations for malware Executable file 1. Polymorphic 2. Obfuscated
3. Selfpacked 4. Multicomponent Execution process 1. Context dependent 2. Unstable 3. Concurrent 4. Distributed
Evidence lower bound Variational Auto-Encoder (Basic) Variational Auto-Encoder (Symmetric)
File and file’s behavior joint distribution
File’s behavior conditional distribution
File’s and behavior shared embedding
Reducing internal traffic Expert decision Benign file Malicious file File’s
distribution approximator Dynamic analysis
Reducing external traffic User 1 User 2 User 3 Previously
observed malware collection File’s distribution approximator
Cybercrime investigations File’s distribution approximator Incident logs and artefacts Corporate
network Alarm!
What’s next? 1.Estimating real world file’s distribution 2.Avoiding model-based adversarial
attacks 3.Preventing private data leakage 4.Environment based anomaly detection
LET’S TALK? Kaspersky Lab HQ 39A/3 Leningradskoe Shosse Moscow, 125212,
Russian Federation Tel: +7 (495) 797-8700 www.kaspersky.com