Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
Search
ota42y
May 29, 2019
Programming
1
510
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
ゼロから作るDeep Learning 2 自然言語編 読書会 第5回
の資料です!
https://retrieva.connpass.com/event/131746/
ota42y
May 29, 2019
Tweet
Share
More Decks by ota42y
See All by ota42y
バックログを導入し やっぱやめた話
ota42y
1
330
PFNにある2つのKubernetes
ota42y
10
5.6k
Q&A for How to use OpenAPI3 for API developer
ota42y
0
2.7k
How to use OpenAPI3 for API developer (RubyKaigi 2019)
ota42y
5
21k
How should we face with microservices (我々はマイクロサービスとどう向き合うべきか)
ota42y
20
4.8k
DeepLearningの本番環境にSageMakerを利用してる話
ota42y
1
6.5k
検索結果の良さを計測して定量的に改善していく
ota42y
3
2.5k
Flutterを広めるために技術同人誌を作った話
ota42y
1
1.7k
何も考えずにCIや継続的デリバリーしたら辛くなった話.pdf
ota42y
0
3.1k
Other Decks in Programming
See All in Programming
AI時代の『改訂新版 良いコード/悪いコードで学ぶ設計入門』 / ai-good-code-bad-code
minodriven
23
9.1k
Quand Symfony, ApiPlatform, OpenAI et LangChain s'allient pour exploiter vos PDF : de la théorie à la production…
ahmedbhs123
0
210
A full stack side project webapp all in Kotlin (KotlinConf 2025)
dankim
0
140
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
190
ニーリーにおけるプロダクトエンジニア
nealle
0
900
Node-RED を(HTTP で)つなげる MCP サーバーを作ってみた
highu
0
120
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
3
520
Startups on Rails in Past, Present and Future–Irina Nazarova, RailsConf 2025
irinanazarova
0
200
MDN Web Docs に日本語翻訳でコントリビュートしたくなる
ohmori_yusuke
1
130
The Niche of CDK Grant オブジェクトって何者?/the-niche-of-cdk-what-isgrant-object
hassaku63
1
550
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
570
VS Code Update for GitHub Copilot
74th
2
670
Featured
See All Featured
Fireside Chat
paigeccino
37
3.5k
It's Worth the Effort
3n
185
28k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Done Done
chrislema
184
16k
RailsConf 2023
tenderlove
30
1.1k
Documentation Writing (for coders)
carmenintech
72
4.9k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Facilitating Awesome Meetings
lara
54
6.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Statistics for Hackers
jakevdp
799
220k
Transcript
θϩ͔Β࡞ΔDeep Learning 2 ̏ষ word2vec 3.1ʙ3.2 ota42y θϩ͔Β࡞ΔDeep Learning
2 ࣗવݴޠฤ ಡॻձ ୈ5ճ
͜ͷষͰΔ͜ͱ • word2vecΛ࣮͢Δ • ਪϕʔεͰ୯ޠΛϕΫτϧͰද͢ํ๏ • γϯϓϧ͕ͩແବଟ͍࣮ • ࣍ͷষͰରԠ
3.1 ਪϕʔεͷख๏ͱ χϡʔϥϧωοτϫʔΫ
ਪϕʔεͷϕΫτϧԽ • ୯ޠΛϕΫτϧʹ͢Δ̎ͭͷख๏ • Χϯτϕʔεʢ̎ষʣ • ਪϕʔεʢ̏ষʣ • ͲͪΒԾઃΛϕʔεʹͯ͠Δ͕Ξϓϩʔνશ͘ผ •
Ծઃɿ୯ޠͷҙຯपғͷ୯ޠ͔Βܗ͞ΕΔ (p.67)
3.1.1ɹΧϯτϕʔεͷख๏ͷ • Χϯτϕʔεपғͷ୯ޠͷසΛܭࢉ͢Δ • ޠኮ͕nͩͱn*nͷڊେͳڞىߦྻ͕ඞཁʹͳΔ • ࣍ݩݮͷͨΊͷSVDO(n^3)ͷܭࢉྔɺ͍
ਪϕʔεͷར • Χϯτϕʔείʔύεશମͷ౷ܭσʔλΛҰؾʹར༻͢Δ • ਪϕʔε(χϡʔϥϧωοτ)ίʔύεͷҰ෦Ͱֶश͢Δ • GPUͷฒྻܭࢉฉ͘ • খ͚ʹͰ͖ɺߴʹฒྻॲཧͰ͖ΔͷͰڊେσʔλͰରԠͰ͖Δ •
ଞʹັྗతͳ͕͋Δ(Β͍͠ɺৄ͘͠3.5.3)
3.1.2ɹਪϕʔεͷख๏ͷ֓ཁ
पғͷ୯ޠ͔Β୯ޠΛʮਪʯ͢Δ • `?`ʹԿ͕ೖΔ͔Λલޙ͔Βਪ • ίϯςΩετ͔ΒλʔήοτΛਪ • ίϯςΩετɿपғͷ୯ޠ(you, goodby) • λʔήοτɿରͷ୯ޠ(`?`)
ਪ݁Ռ • ֤୯ޠ͕ͦ͜ʹݱΕΔ֬Λग़ྗ • ίϯςΩετΛϞσϧʹ༩͑Δͱ୯ޠͷ͕֬ಘΒΕΔ
3.1.3 χϡʔϥϧωοτϫʔΫʹ͓͚Δ୯ ޠͷॲཧํ๏ • χϡʔϥϧωοτϫʔΫ(NN)ͷೖྗݻఆϕΫτϧ • ୯ޠΛͦͷ··ೖΕΔͷ͍͠ • ୯ޠΛone-hotදݱ(one-hotϕΫτϧ)ʹม͢Δ
one-hotදݱ • ޠኮͷ͞Λ࣋ͪɺ୯ޠIDͱ֘͢Δ෦͕1ɺͦΕҎ֎͕0 ͷϕΫτϧ • ͯ͢ͷ୯ޠΛಉ͡͞ͷϕΫτϧͱͯ͠දݱ
one-hotදݱ • શ݁߹Ͱม͢ΔͳΒ؆୯(ྫதؒ=3)
αϯϓϧίʔυ(p.99) • np.dot(c, W)୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͯ͠Δ͚ͩ • W[0]ͷσʔλΛऔΓग़ͯ͠Δ͚ͩ • ແବͬΆ͍͕࣍ͷষͰ࣏͢Β͍͠
ϨΠϠදݱ • MatMulϨΠϠ(p.30)Ͱಉ͜͡ͱ͕Ͱ͖Δ • np.dot͢Δ͚ͩͷϨΠϠͳͷͰ
3.2ɹγϯϓϧͳword2vec
word2vecΛ࣮͢Δ • word2vecͰΘΕΔϞσϧCROWϞσϧͱskip-gramϞσϧ • "word2vec"͕͜ΕΒͷϞσϧΛࢦ͢߹͋Δ • ຊདྷͷҙຯͱζϨͯΔ
3.2.1 CBOWϞσϧͷਪॲཧ • ίϯςΩετ͔ΒλʔήοτΛਪଌ͢ΔNN • ίϯςΩετʹपғͷ୯ޠ • λʔήοτʹରͷ୯ޠ
୯ޠͷࢄදݱ • CBOWϞσϧΛ܇࿅͢Δ͜ͱͰ୯ޠͷࢄදݱΛಘΒΕΔ • Ϟσϧͷύϥϝʔλ͕ࢄදݱʹରԠ͢Δ
CBOWϞσϧͷશମ૾ • ίϯςΩετʹ̎ɺӅΕʹ̏ͷ߹
CBOWϞσϧͷશମ૾ • ೖྗෳݸͷone-hotදݱͷ୯ޠ • ग़ྗ֤୯ޠͷείΞ • softmaxΛ͏ͱ͕֬ಘΒΕΔ • தؒೖྗ͔Βͷͷฏۉ
• ࢄදݱͷਖ਼ମ • [$ W_{in}]7*3ͷॏΈ • ͜Ε͕୯ޠͷࢄදݱ • ֶशʹΑͬͯྑ͍ࢄදݱʹ͍ͯ͘͠
CBOWϞσϧͷϨΠϠදݱ
CBOWϞσϧͷϨΠϠදݱ • ̎ͭͷMatMulϨΠϠ • ୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͭ͢(P.99) • ̎ͭͷฏۉΛऔΔ(=ͯ͠0.5Λ͔͚Δ) • scoreͷશ݁߹ •
׆ੑԽؔແ͍ͷͰΘΓͱγϯϓϧ
3.2.2 CBOWϞσϧͷֶश • χϡʔϥϧωοτϫʔΫͷηΦϦʔ௨Γ • CBOWଞΫϥεྨΛ͢ΔNN • Ϋϥεʹone-hotͰද͞Εͨ୯ޠ • είΞ͔Β֬ΛٻΊͯɺਖ਼ղͱͷࠩΛֶश͢Δ
• Softmaxؔʹ͔͚ͯ֬ʹ͢Δ • ڭࢣϥϕϧ͔ΒަࠩΤϯτϩϐʔޡࠩΛٻΊΔ
ϨΠϠදݱ • Softmax with lossΛ͚Ճ͑Δ
ίʔυϦʔσΟϯά • ch03/cbow_predict.py • https://github.com/oreilly-japan/deep-learning-from- scratch-2/blob/master/ch03/cbow_predict.py
3.2.3 word2vecͷॏΈͱࢄදݱ • ͱɹɹͷҧ͍ • ྆ํͱ୯ޠͷҙຯ͕Τϯίʔυ͞Ε͍ͯΔ • ܗঢ়͕ҧ͏ • ɹɹ7x3
• ɹɹ3x7 Win Wout Win Wout
ࢄදݱɹɹΛ͏ • ɹɹ શ͘Θͳ͍ɹ • ɹɹʹର͢Δskip-ngramͰͷ༗༻ੑ࣮ݧ • https://arxiv.org/abs/1611.01462 • ɹɹ͏͜ͱͰΑ͍݁Ռ͕ಘΒΕΔͱ͍͏ใࠂ
• https://nlp.stanford.edu/projects/glove/ • word2vecͱࣅ͍ͯΔͭͷख๏ Win Win Wout Wout