Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
ota42y
May 29, 2019
Programming
1
560
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
ゼロから作るDeep Learning 2 自然言語編 読書会 第5回
の資料です!
https://retrieva.connpass.com/event/131746/
ota42y
May 29, 2019
Tweet
Share
More Decks by ota42y
See All by ota42y
バックログを導入し やっぱやめた話
ota42y
1
370
PFNにある2つのKubernetes
ota42y
10
5.8k
Q&A for How to use OpenAPI3 for API developer
ota42y
0
2.8k
How to use OpenAPI3 for API developer (RubyKaigi 2019)
ota42y
5
22k
How should we face with microservices (我々はマイクロサービスとどう向き合うべきか)
ota42y
20
4.9k
DeepLearningの本番環境にSageMakerを利用してる話
ota42y
1
6.7k
検索結果の良さを計測して定量的に改善していく
ota42y
3
2.6k
Flutterを広めるために技術同人誌を作った話
ota42y
1
1.8k
何も考えずにCIや継続的デリバリーしたら辛くなった話.pdf
ota42y
0
3.2k
Other Decks in Programming
See All in Programming
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
200
CSC307 Lecture 04
javiergs
PRO
0
660
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
CSC307 Lecture 06
javiergs
PRO
0
690
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
4k
Gemini for developers
meteatamel
0
100
Package Management Learnings from Homebrew
mikemcquaid
0
230
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.7k
ぼくの開発環境2026
yuzneri
0
240
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
460
Oxlint JS plugins
kazupon
1
1k
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Curious Case for Waylosing
cassininazir
0
240
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
The untapped power of vector embeddings
frankvandijk
1
1.6k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
85
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
440
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Visualization
eitanlees
150
17k
A Tale of Four Properties
chriscoyier
162
24k
Transcript
θϩ͔Β࡞ΔDeep Learning 2 ̏ষ word2vec 3.1ʙ3.2 ota42y θϩ͔Β࡞ΔDeep Learning
2 ࣗવݴޠฤ ಡॻձ ୈ5ճ
͜ͷষͰΔ͜ͱ • word2vecΛ࣮͢Δ • ਪϕʔεͰ୯ޠΛϕΫτϧͰද͢ํ๏ • γϯϓϧ͕ͩແବଟ͍࣮ • ࣍ͷষͰରԠ
3.1 ਪϕʔεͷख๏ͱ χϡʔϥϧωοτϫʔΫ
ਪϕʔεͷϕΫτϧԽ • ୯ޠΛϕΫτϧʹ͢Δ̎ͭͷख๏ • Χϯτϕʔεʢ̎ষʣ • ਪϕʔεʢ̏ষʣ • ͲͪΒԾઃΛϕʔεʹͯ͠Δ͕Ξϓϩʔνશ͘ผ •
Ծઃɿ୯ޠͷҙຯपғͷ୯ޠ͔Βܗ͞ΕΔ (p.67)
3.1.1ɹΧϯτϕʔεͷख๏ͷ • Χϯτϕʔεपғͷ୯ޠͷසΛܭࢉ͢Δ • ޠኮ͕nͩͱn*nͷڊେͳڞىߦྻ͕ඞཁʹͳΔ • ࣍ݩݮͷͨΊͷSVDO(n^3)ͷܭࢉྔɺ͍
ਪϕʔεͷར • Χϯτϕʔείʔύεશମͷ౷ܭσʔλΛҰؾʹར༻͢Δ • ਪϕʔε(χϡʔϥϧωοτ)ίʔύεͷҰ෦Ͱֶश͢Δ • GPUͷฒྻܭࢉฉ͘ • খ͚ʹͰ͖ɺߴʹฒྻॲཧͰ͖ΔͷͰڊେσʔλͰରԠͰ͖Δ •
ଞʹັྗతͳ͕͋Δ(Β͍͠ɺৄ͘͠3.5.3)
3.1.2ɹਪϕʔεͷख๏ͷ֓ཁ
पғͷ୯ޠ͔Β୯ޠΛʮਪʯ͢Δ • `?`ʹԿ͕ೖΔ͔Λલޙ͔Βਪ • ίϯςΩετ͔ΒλʔήοτΛਪ • ίϯςΩετɿपғͷ୯ޠ(you, goodby) • λʔήοτɿରͷ୯ޠ(`?`)
ਪ݁Ռ • ֤୯ޠ͕ͦ͜ʹݱΕΔ֬Λग़ྗ • ίϯςΩετΛϞσϧʹ༩͑Δͱ୯ޠͷ͕֬ಘΒΕΔ
3.1.3 χϡʔϥϧωοτϫʔΫʹ͓͚Δ୯ ޠͷॲཧํ๏ • χϡʔϥϧωοτϫʔΫ(NN)ͷೖྗݻఆϕΫτϧ • ୯ޠΛͦͷ··ೖΕΔͷ͍͠ • ୯ޠΛone-hotදݱ(one-hotϕΫτϧ)ʹม͢Δ
one-hotදݱ • ޠኮͷ͞Λ࣋ͪɺ୯ޠIDͱ֘͢Δ෦͕1ɺͦΕҎ֎͕0 ͷϕΫτϧ • ͯ͢ͷ୯ޠΛಉ͡͞ͷϕΫτϧͱͯ͠දݱ
one-hotදݱ • શ݁߹Ͱม͢ΔͳΒ؆୯(ྫதؒ=3)
αϯϓϧίʔυ(p.99) • np.dot(c, W)୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͯ͠Δ͚ͩ • W[0]ͷσʔλΛऔΓग़ͯ͠Δ͚ͩ • ແବͬΆ͍͕࣍ͷষͰ࣏͢Β͍͠
ϨΠϠදݱ • MatMulϨΠϠ(p.30)Ͱಉ͜͡ͱ͕Ͱ͖Δ • np.dot͢Δ͚ͩͷϨΠϠͳͷͰ
3.2ɹγϯϓϧͳword2vec
word2vecΛ࣮͢Δ • word2vecͰΘΕΔϞσϧCROWϞσϧͱskip-gramϞσϧ • "word2vec"͕͜ΕΒͷϞσϧΛࢦ͢߹͋Δ • ຊདྷͷҙຯͱζϨͯΔ
3.2.1 CBOWϞσϧͷਪॲཧ • ίϯςΩετ͔ΒλʔήοτΛਪଌ͢ΔNN • ίϯςΩετʹपғͷ୯ޠ • λʔήοτʹରͷ୯ޠ
୯ޠͷࢄදݱ • CBOWϞσϧΛ܇࿅͢Δ͜ͱͰ୯ޠͷࢄදݱΛಘΒΕΔ • Ϟσϧͷύϥϝʔλ͕ࢄදݱʹରԠ͢Δ
CBOWϞσϧͷશମ૾ • ίϯςΩετʹ̎ɺӅΕʹ̏ͷ߹
CBOWϞσϧͷશମ૾ • ೖྗෳݸͷone-hotදݱͷ୯ޠ • ग़ྗ֤୯ޠͷείΞ • softmaxΛ͏ͱ͕֬ಘΒΕΔ • தؒೖྗ͔Βͷͷฏۉ
• ࢄදݱͷਖ਼ମ • [$ W_{in}]7*3ͷॏΈ • ͜Ε͕୯ޠͷࢄදݱ • ֶशʹΑͬͯྑ͍ࢄදݱʹ͍ͯ͘͠
CBOWϞσϧͷϨΠϠදݱ
CBOWϞσϧͷϨΠϠදݱ • ̎ͭͷMatMulϨΠϠ • ୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͭ͢(P.99) • ̎ͭͷฏۉΛऔΔ(=ͯ͠0.5Λ͔͚Δ) • scoreͷશ݁߹ •
׆ੑԽؔແ͍ͷͰΘΓͱγϯϓϧ
3.2.2 CBOWϞσϧͷֶश • χϡʔϥϧωοτϫʔΫͷηΦϦʔ௨Γ • CBOWଞΫϥεྨΛ͢ΔNN • Ϋϥεʹone-hotͰද͞Εͨ୯ޠ • είΞ͔Β֬ΛٻΊͯɺਖ਼ղͱͷࠩΛֶश͢Δ
• Softmaxؔʹ͔͚ͯ֬ʹ͢Δ • ڭࢣϥϕϧ͔ΒަࠩΤϯτϩϐʔޡࠩΛٻΊΔ
ϨΠϠදݱ • Softmax with lossΛ͚Ճ͑Δ
ίʔυϦʔσΟϯά • ch03/cbow_predict.py • https://github.com/oreilly-japan/deep-learning-from- scratch-2/blob/master/ch03/cbow_predict.py
3.2.3 word2vecͷॏΈͱࢄදݱ • ͱɹɹͷҧ͍ • ྆ํͱ୯ޠͷҙຯ͕Τϯίʔυ͞Ε͍ͯΔ • ܗঢ়͕ҧ͏ • ɹɹ7x3
• ɹɹ3x7 Win Wout Win Wout
ࢄදݱɹɹΛ͏ • ɹɹ શ͘Θͳ͍ɹ • ɹɹʹର͢Δskip-ngramͰͷ༗༻ੑ࣮ݧ • https://arxiv.org/abs/1611.01462 • ɹɹ͏͜ͱͰΑ͍݁Ռ͕ಘΒΕΔͱ͍͏ใࠂ
• https://nlp.stanford.edu/projects/glove/ • word2vecͱࣅ͍ͯΔͭͷख๏ Win Win Wout Wout