Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
Search
ota42y
May 29, 2019
Programming
1
480
ゼロから作るDeep Learning 2 3章 word2vec 3.1〜3.2
ゼロから作るDeep Learning 2 自然言語編 読書会 第5回
の資料です!
https://retrieva.connpass.com/event/131746/
ota42y
May 29, 2019
Tweet
Share
More Decks by ota42y
See All by ota42y
バックログを導入し やっぱやめた話
ota42y
1
280
PFNにある2つのKubernetes
ota42y
10
5.5k
Q&A for How to use OpenAPI3 for API developer
ota42y
0
2.6k
How to use OpenAPI3 for API developer (RubyKaigi 2019)
ota42y
5
21k
How should we face with microservices (我々はマイクロサービスとどう向き合うべきか)
ota42y
20
4.7k
DeepLearningの本番環境にSageMakerを利用してる話
ota42y
1
6.3k
検索結果の良さを計測して定量的に改善していく
ota42y
3
2.5k
Flutterを広めるために技術同人誌を作った話
ota42y
1
1.7k
何も考えずにCIや継続的デリバリーしたら辛くなった話.pdf
ota42y
0
3k
Other Decks in Programming
See All in Programming
1年目の私に伝えたい!テストコードを怖がらなくなるためのヒント/Tips for not being afraid of test code
push_gawa
1
620
Djangoアプリケーション 運用のリアル 〜問題発生から可視化、最適化への道〜 #pyconshizu
kashewnuts
1
270
DRFを少しずつ オニオンアーキテクチャに寄せていく DjangoCongress JP 2025
nealle
2
280
推しメソッドsource_locationのしくみを探る - はじめてRubyのコードを読んでみた
nobu09
2
330
Introduction to kotlinx.rpc
arawn
0
770
Boos Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
410
コミュニティ駆動 AWS CDK ライブラリ「Open Constructs Library」 / community-cdk-library
gotok365
2
250
2025.2.14_Developers Summit 2025_登壇資料
0101unite
0
200
ナレッジイネイブリングにAIを活用してみる ゆるSRE勉強会 #9
nealle
0
160
From the Wild into the Clouds - Laravel Meetup Talk
neverything
0
160
負債になりにくいCSSをデザイナとつくるには?
fsubal
10
2.6k
仕様変更に耐えるための"今の"DRY原則を考える
mkmk884
9
3.2k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Language of Interfaces
destraynor
156
24k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
430
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
How to Ace a Technical Interview
jacobian
276
23k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Transcript
θϩ͔Β࡞ΔDeep Learning 2 ̏ষ word2vec 3.1ʙ3.2 ota42y θϩ͔Β࡞ΔDeep Learning
2 ࣗવݴޠฤ ಡॻձ ୈ5ճ
͜ͷষͰΔ͜ͱ • word2vecΛ࣮͢Δ • ਪϕʔεͰ୯ޠΛϕΫτϧͰද͢ํ๏ • γϯϓϧ͕ͩແବଟ͍࣮ • ࣍ͷষͰରԠ
3.1 ਪϕʔεͷख๏ͱ χϡʔϥϧωοτϫʔΫ
ਪϕʔεͷϕΫτϧԽ • ୯ޠΛϕΫτϧʹ͢Δ̎ͭͷख๏ • Χϯτϕʔεʢ̎ষʣ • ਪϕʔεʢ̏ষʣ • ͲͪΒԾઃΛϕʔεʹͯ͠Δ͕Ξϓϩʔνશ͘ผ •
Ծઃɿ୯ޠͷҙຯपғͷ୯ޠ͔Βܗ͞ΕΔ (p.67)
3.1.1ɹΧϯτϕʔεͷख๏ͷ • Χϯτϕʔεपғͷ୯ޠͷසΛܭࢉ͢Δ • ޠኮ͕nͩͱn*nͷڊେͳڞىߦྻ͕ඞཁʹͳΔ • ࣍ݩݮͷͨΊͷSVDO(n^3)ͷܭࢉྔɺ͍
ਪϕʔεͷར • Χϯτϕʔείʔύεશମͷ౷ܭσʔλΛҰؾʹར༻͢Δ • ਪϕʔε(χϡʔϥϧωοτ)ίʔύεͷҰ෦Ͱֶश͢Δ • GPUͷฒྻܭࢉฉ͘ • খ͚ʹͰ͖ɺߴʹฒྻॲཧͰ͖ΔͷͰڊେσʔλͰରԠͰ͖Δ •
ଞʹັྗతͳ͕͋Δ(Β͍͠ɺৄ͘͠3.5.3)
3.1.2ɹਪϕʔεͷख๏ͷ֓ཁ
पғͷ୯ޠ͔Β୯ޠΛʮਪʯ͢Δ • `?`ʹԿ͕ೖΔ͔Λલޙ͔Βਪ • ίϯςΩετ͔ΒλʔήοτΛਪ • ίϯςΩετɿपғͷ୯ޠ(you, goodby) • λʔήοτɿରͷ୯ޠ(`?`)
ਪ݁Ռ • ֤୯ޠ͕ͦ͜ʹݱΕΔ֬Λग़ྗ • ίϯςΩετΛϞσϧʹ༩͑Δͱ୯ޠͷ͕֬ಘΒΕΔ
3.1.3 χϡʔϥϧωοτϫʔΫʹ͓͚Δ୯ ޠͷॲཧํ๏ • χϡʔϥϧωοτϫʔΫ(NN)ͷೖྗݻఆϕΫτϧ • ୯ޠΛͦͷ··ೖΕΔͷ͍͠ • ୯ޠΛone-hotදݱ(one-hotϕΫτϧ)ʹม͢Δ
one-hotදݱ • ޠኮͷ͞Λ࣋ͪɺ୯ޠIDͱ֘͢Δ෦͕1ɺͦΕҎ֎͕0 ͷϕΫτϧ • ͯ͢ͷ୯ޠΛಉ͡͞ͷϕΫτϧͱͯ͠දݱ
one-hotදݱ • શ݁߹Ͱม͢ΔͳΒ؆୯(ྫதؒ=3)
αϯϓϧίʔυ(p.99) • np.dot(c, W)୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͯ͠Δ͚ͩ • W[0]ͷσʔλΛऔΓग़ͯ͠Δ͚ͩ • ແବͬΆ͍͕࣍ͷষͰ࣏͢Β͍͠
ϨΠϠදݱ • MatMulϨΠϠ(p.30)Ͱಉ͜͡ͱ͕Ͱ͖Δ • np.dot͢Δ͚ͩͷϨΠϠͳͷͰ
3.2ɹγϯϓϧͳword2vec
word2vecΛ࣮͢Δ • word2vecͰΘΕΔϞσϧCROWϞσϧͱskip-gramϞσϧ • "word2vec"͕͜ΕΒͷϞσϧΛࢦ͢߹͋Δ • ຊདྷͷҙຯͱζϨͯΔ
3.2.1 CBOWϞσϧͷਪॲཧ • ίϯςΩετ͔ΒλʔήοτΛਪଌ͢ΔNN • ίϯςΩετʹपғͷ୯ޠ • λʔήοτʹରͷ୯ޠ
୯ޠͷࢄදݱ • CBOWϞσϧΛ܇࿅͢Δ͜ͱͰ୯ޠͷࢄදݱΛಘΒΕΔ • Ϟσϧͷύϥϝʔλ͕ࢄදݱʹରԠ͢Δ
CBOWϞσϧͷશମ૾ • ίϯςΩετʹ̎ɺӅΕʹ̏ͷ߹
CBOWϞσϧͷશମ૾ • ೖྗෳݸͷone-hotදݱͷ୯ޠ • ग़ྗ֤୯ޠͷείΞ • softmaxΛ͏ͱ͕֬ಘΒΕΔ • தؒೖྗ͔Βͷͷฏۉ
• ࢄදݱͷਖ਼ମ • [$ W_{in}]7*3ͷॏΈ • ͜Ε͕୯ޠͷࢄදݱ • ֶशʹΑͬͯྑ͍ࢄදݱʹ͍ͯ͘͠
CBOWϞσϧͷϨΠϠදݱ
CBOWϞσϧͷϨΠϠදݱ • ̎ͭͷMatMulϨΠϠ • ୯ޠʹରԠ͢ΔॏΈΛऔΓग़ͭ͢(P.99) • ̎ͭͷฏۉΛऔΔ(=ͯ͠0.5Λ͔͚Δ) • scoreͷશ݁߹ •
׆ੑԽؔແ͍ͷͰΘΓͱγϯϓϧ
3.2.2 CBOWϞσϧͷֶश • χϡʔϥϧωοτϫʔΫͷηΦϦʔ௨Γ • CBOWଞΫϥεྨΛ͢ΔNN • Ϋϥεʹone-hotͰද͞Εͨ୯ޠ • είΞ͔Β֬ΛٻΊͯɺਖ਼ղͱͷࠩΛֶश͢Δ
• Softmaxؔʹ͔͚ͯ֬ʹ͢Δ • ڭࢣϥϕϧ͔ΒަࠩΤϯτϩϐʔޡࠩΛٻΊΔ
ϨΠϠදݱ • Softmax with lossΛ͚Ճ͑Δ
ίʔυϦʔσΟϯά • ch03/cbow_predict.py • https://github.com/oreilly-japan/deep-learning-from- scratch-2/blob/master/ch03/cbow_predict.py
3.2.3 word2vecͷॏΈͱࢄදݱ • ͱɹɹͷҧ͍ • ྆ํͱ୯ޠͷҙຯ͕Τϯίʔυ͞Ε͍ͯΔ • ܗঢ়͕ҧ͏ • ɹɹ7x3
• ɹɹ3x7 Win Wout Win Wout
ࢄදݱɹɹΛ͏ • ɹɹ શ͘Θͳ͍ɹ • ɹɹʹର͢Δskip-ngramͰͷ༗༻ੑ࣮ݧ • https://arxiv.org/abs/1611.01462 • ɹɹ͏͜ͱͰΑ͍݁Ռ͕ಘΒΕΔͱ͍͏ใࠂ
• https://nlp.stanford.edu/projects/glove/ • word2vecͱࣅ͍ͯΔͭͷख๏ Win Win Wout Wout