Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A/B Testing Got You Elected Mister President
Search
Penelope Phippen
April 06, 2013
Technology
1
360
A/B Testing Got You Elected Mister President
Penelope Phippen
April 06, 2013
Tweet
Share
More Decks by Penelope Phippen
See All by Penelope Phippen
Introducing Rubyfmt
penelope_zone
0
540
How RSpec Works
penelope_zone
0
6.5k
Quick and easy browser testing using RSpec and Rails 5.1
penelope_zone
1
77
Teaching RSpec to play nice with Rails
penelope_zone
2
120
Little machines that eat strings
penelope_zone
1
84
What is processor (brighton ruby edition)
penelope_zone
0
95
What is processor?
penelope_zone
1
340
extremely defensive coding - rubyconf edition
penelope_zone
0
250
Agile, etc.
penelope_zone
2
210
Other Decks in Technology
See All in Technology
Exadata Database Service on Cloud@Customer セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
2
1.5k
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
190
2/18 Making Security Scale: メルカリが考えるセキュリティ戦略 - Coincheck x LayerX x Mercari
jsonf
0
240
AI自体のOps 〜LLMアプリの運用、AWSサービスとOSSの使い分け〜
minorun365
PRO
9
750
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
280
株式会社Awarefy(アウェアファイ)会社説明資料 / Awarefy-Company-Deck
awarefy
3
11k
E2Eテスト自動化入門
devops_vtj
1
100
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
280
IAMのマニアックな話2025
nrinetcom
PRO
6
1.3k
クラウド食堂とは?
hiyanger
0
120
Amazon Q Developerの無料利用枠を使い倒してHello worldを表示させよう!
nrinetcom
PRO
2
120
目標と時間軸 〜ベイビーステップでケイパビリティを高めよう〜
kakehashi
PRO
8
860
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
35
1.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Why Our Code Smells
bkeepers
PRO
336
57k
4 Signs Your Business is Dying
shpigford
183
22k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
Designing for humans not robots
tammielis
250
25k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Transcript
A/B Testing Got you elected Mister President
@samphippen @samphippen
Should I make this change?
Users A group: 50% B group: 50% Site change Old
site
Measure some metric
Do maths on the two groups
???
Profit
Lemme show you my favourite A/B test
None
None
None
None
None
None
Also some videos
None
+$60 million
None
Protips
Same user always sees same version
Caching
Roughly same performance
Also for feature flagging
A super lightning fast guide on how to do it
and what it looks like
gem 'split'
require 'split/dashboard' run Rack::URLMap.new \ "/" => YourApp::Application, "/split" =>
Split::Dashboard.new
<% ab_test("experiment_name", "a", "b") do |c| %> <a href="/win" class="btn
<%= c %>"> Get points? </a> <% end %>
What it looks like
None
None
None
https://github.com/ andrew/split
How to interpret the results
Stats time
Confidence Value
P =0.95 is used in medical trials
Common mistake: Assumption of normality
None
This will probably work for you
How to design the experiment
Step 1: clearly state your hypothesis
Example: I will get more donations if our button is
jimmy wale’s face
Formally: Null Hypothesis: there will be no increase in donations
if we use jimmy wales face
Formally: positive Hypothesis: there will be an increase in donations
if we use jimmy wales face
Step 2: Pick a statistical test
Example: difference of proportions (the standard A/b test)
http://stattrek.com/ hypothesis-test/ difference-in- proportions.aspx
Step 3: Decide an experiment length (number of days)
Example: we get 200 hits a day, let’s test for
15 days for 3000 hits
Alternatively: A fixed sample size Stop after 10000 users
Step 4: Split
Half the users get jimmy wales face half the users
get whatever the button was before
Step 5: inspect results and analyse
Let’s talk about analysis
Let’s work two examples (one null, one positive)
With jimmy Without Jimmy Users in test 100 100 Users
that clicked 27 18
Confidence = 93.6% Too low at 95% to conclude that
this is better
common mistake: Sample size
With jimmy Without Jimmy Users in test 1000 1000 Users
that clicked 270 180
99.9% confidence High enough for us to declare this better
Confounding factors ARE bad
this is hard stuff I hope you understood :) ask
me questions @samphippen