Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A/B Testing Got You Elected Mister President
Search
Penelope Phippen
April 06, 2013
Technology
1
360
A/B Testing Got You Elected Mister President
Penelope Phippen
April 06, 2013
Tweet
Share
More Decks by Penelope Phippen
See All by Penelope Phippen
Introducing Rubyfmt
penelope_zone
0
570
How RSpec Works
penelope_zone
0
6.7k
Quick and easy browser testing using RSpec and Rails 5.1
penelope_zone
1
86
Teaching RSpec to play nice with Rails
penelope_zone
2
150
Little machines that eat strings
penelope_zone
1
110
What is processor (brighton ruby edition)
penelope_zone
0
120
What is processor?
penelope_zone
1
360
extremely defensive coding - rubyconf edition
penelope_zone
0
270
Agile, etc.
penelope_zone
2
230
Other Decks in Technology
See All in Technology
Okta Identity Governanceで実現する最小権限の原則 / Implementing the Principle of Least Privilege with Okta Identity Governance
tatsumin39
0
160
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
Copilot Studio ハンズオン - 生成オーケストレーションモード
tomoyasasakimskk
0
190
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
だいたい分かった気になる 『SREの知識地図』 / introduction-to-sre-knowledge-map-book
katsuhisa91
PRO
3
1.2k
Dylib Hijacking on macOS: Dead or Alive?
patrickwardle
0
440
事業開発におけるDify活用事例
kentarofujii
4
1.2k
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
1
150
NLPコロキウム20251022_超効率化への挑戦: LLM 1bit量子化のロードマップ
yumaichikawa
1
180
コンパウンド組織のCRE #cre_meetup
layerx
PRO
0
210
Databricks AI/BI Genie の「値ディクショナリー」をAmazonの奥地(S3)まで見に行く
kameitomohiro
1
380
OpenTelemetry が拡げる Gemini CLI の可観測性
phaya72
2
1.7k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Typedesign – Prime Four
hannesfritz
42
2.8k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How to train your dragon (web standard)
notwaldorf
97
6.3k
For a Future-Friendly Web
brad_frost
180
10k
It's Worth the Effort
3n
187
28k
Automating Front-end Workflow
addyosmani
1371
200k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Docker and Python
trallard
46
3.6k
Transcript
A/B Testing Got you elected Mister President
@samphippen @samphippen
Should I make this change?
Users A group: 50% B group: 50% Site change Old
site
Measure some metric
Do maths on the two groups
???
Profit
Lemme show you my favourite A/B test
None
None
None
None
None
None
Also some videos
None
+$60 million
None
Protips
Same user always sees same version
Caching
Roughly same performance
Also for feature flagging
A super lightning fast guide on how to do it
and what it looks like
gem 'split'
require 'split/dashboard' run Rack::URLMap.new \ "/" => YourApp::Application, "/split" =>
Split::Dashboard.new
<% ab_test("experiment_name", "a", "b") do |c| %> <a href="/win" class="btn
<%= c %>"> Get points? </a> <% end %>
What it looks like
None
None
None
https://github.com/ andrew/split
How to interpret the results
Stats time
Confidence Value
P =0.95 is used in medical trials
Common mistake: Assumption of normality
None
This will probably work for you
How to design the experiment
Step 1: clearly state your hypothesis
Example: I will get more donations if our button is
jimmy wale’s face
Formally: Null Hypothesis: there will be no increase in donations
if we use jimmy wales face
Formally: positive Hypothesis: there will be an increase in donations
if we use jimmy wales face
Step 2: Pick a statistical test
Example: difference of proportions (the standard A/b test)
http://stattrek.com/ hypothesis-test/ difference-in- proportions.aspx
Step 3: Decide an experiment length (number of days)
Example: we get 200 hits a day, let’s test for
15 days for 3000 hits
Alternatively: A fixed sample size Stop after 10000 users
Step 4: Split
Half the users get jimmy wales face half the users
get whatever the button was before
Step 5: inspect results and analyse
Let’s talk about analysis
Let’s work two examples (one null, one positive)
With jimmy Without Jimmy Users in test 100 100 Users
that clicked 27 18
Confidence = 93.6% Too low at 95% to conclude that
this is better
common mistake: Sample size
With jimmy Without Jimmy Users in test 1000 1000 Users
that clicked 270 180
99.9% confidence High enough for us to declare this better
Confounding factors ARE bad
this is hard stuff I hope you understood :) ask
me questions @samphippen