Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A/B Testing Got You Elected Mister President
Search
Penelope Phippen
April 06, 2013
Technology
1
360
A/B Testing Got You Elected Mister President
Penelope Phippen
April 06, 2013
Tweet
Share
More Decks by Penelope Phippen
See All by Penelope Phippen
Introducing Rubyfmt
penelope_zone
0
570
How RSpec Works
penelope_zone
0
6.6k
Quick and easy browser testing using RSpec and Rails 5.1
penelope_zone
1
82
Teaching RSpec to play nice with Rails
penelope_zone
2
140
Little machines that eat strings
penelope_zone
1
100
What is processor (brighton ruby edition)
penelope_zone
0
110
What is processor?
penelope_zone
1
360
extremely defensive coding - rubyconf edition
penelope_zone
0
260
Agile, etc.
penelope_zone
2
230
Other Decks in Technology
See All in Technology
モダンフロントエンド 開発研修
recruitengineers
PRO
3
410
Goss: New Production-Ready Go Binding for Faiss #coefl_go_jp
bengo4com
0
1.1k
アジャイルテストで高品質のスプリントレビューを
takesection
0
120
Yahoo!広告ビジネス基盤におけるバックエンド開発
lycorptech_jp
PRO
1
280
ABEMAにおける 生成AI活用の現在地 / The Current Status of Generative AI at ABEMA
dekatotoro
0
670
人と組織に偏重したEMへのアンチテーゼ──なぜ、EMに設計力が必要なのか/An antithesis to the overemphasis of people and organizations in EM
dskst
6
620
microCMS 最新リリース情報(microCMS Meetup 2025)
microcms
0
110
実践データベース設計 ①データベース設計概論
recruitengineers
PRO
3
300
新卒(ほぼ)専業Kagglerという選択肢
nocchi1
1
2.4k
Claude Code x Androidアプリ 開発
kgmyshin
1
590
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
6
560
株式会社ARAV 採用案内
maqui
0
350
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Side Projects
sachag
455
43k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
RailsConf 2023
tenderlove
30
1.2k
How to Ace a Technical Interview
jacobian
279
23k
4 Signs Your Business is Dying
shpigford
184
22k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Optimizing for Happiness
mojombo
379
70k
Transcript
A/B Testing Got you elected Mister President
@samphippen @samphippen
Should I make this change?
Users A group: 50% B group: 50% Site change Old
site
Measure some metric
Do maths on the two groups
???
Profit
Lemme show you my favourite A/B test
None
None
None
None
None
None
Also some videos
None
+$60 million
None
Protips
Same user always sees same version
Caching
Roughly same performance
Also for feature flagging
A super lightning fast guide on how to do it
and what it looks like
gem 'split'
require 'split/dashboard' run Rack::URLMap.new \ "/" => YourApp::Application, "/split" =>
Split::Dashboard.new
<% ab_test("experiment_name", "a", "b") do |c| %> <a href="/win" class="btn
<%= c %>"> Get points? </a> <% end %>
What it looks like
None
None
None
https://github.com/ andrew/split
How to interpret the results
Stats time
Confidence Value
P =0.95 is used in medical trials
Common mistake: Assumption of normality
None
This will probably work for you
How to design the experiment
Step 1: clearly state your hypothesis
Example: I will get more donations if our button is
jimmy wale’s face
Formally: Null Hypothesis: there will be no increase in donations
if we use jimmy wales face
Formally: positive Hypothesis: there will be an increase in donations
if we use jimmy wales face
Step 2: Pick a statistical test
Example: difference of proportions (the standard A/b test)
http://stattrek.com/ hypothesis-test/ difference-in- proportions.aspx
Step 3: Decide an experiment length (number of days)
Example: we get 200 hits a day, let’s test for
15 days for 3000 hits
Alternatively: A fixed sample size Stop after 10000 users
Step 4: Split
Half the users get jimmy wales face half the users
get whatever the button was before
Step 5: inspect results and analyse
Let’s talk about analysis
Let’s work two examples (one null, one positive)
With jimmy Without Jimmy Users in test 100 100 Users
that clicked 27 18
Confidence = 93.6% Too low at 95% to conclude that
this is better
common mistake: Sample size
With jimmy Without Jimmy Users in test 1000 1000 Users
that clicked 270 180
99.9% confidence High enough for us to declare this better
Confounding factors ARE bad
this is hard stuff I hope you understood :) ask
me questions @samphippen