Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒ふりかえり研修2019
Search
pokotyamu
April 02, 2019
Education
1
1.6k
新卒ふりかえり研修2019
pokotyamu
April 02, 2019
Tweet
Share
More Decks by pokotyamu
See All by pokotyamu
プロダクト作りと新卒研修作り、そして組織作り
pokotyamu
1
170
アジャイル・スクラム研修2025
pokotyamu
0
300
ふりかえり研修2025
pokotyamu
0
1.3k
新卒交流ワークショップ
pokotyamu
0
500
CTI の基礎コース受けてきた
pokotyamu
1
200
feedforce 青山オフィスへの行き方
pokotyamu
0
310
格ゲーから学ぶコーチング
pokotyamu
1
120
アジャイル何も知らん人事がアジャイル大好きお兄さんの引き出しを使い倒したら「変化に立ち向かえるチーム」に成長できた件
pokotyamu
1
2.9k
解説カンバン方式
pokotyamu
1
740
Other Decks in Education
See All in Education
Tutorial: Foundations of Blind Source Separation and Its Advances in Spatial Self-Supervised Learning
yoshipon
1
130
2025年度春学期 統計学 第8回 演習(1) 問題に対する答案の書き方(講義前配付用) (2025. 5. 29)
akiraasano
PRO
0
120
2025年度春学期 統計学 第7回 データの関係を知る(2)ー回帰と決定係数 (2025. 5. 22)
akiraasano
PRO
0
140
2025年度春学期 統計学 第11回 分布の「型」を考える ー 確率分布モデルと正規分布 (2025. 6. 19)
akiraasano
PRO
0
150
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
4
16k
バックオフィス組織にも「チームトポロジー」の考えが使えるかもしれない!!
masakiokuda
0
110
Education-JAWS #3 ~教育現場に、AWSのチカラを~
masakiokuda
0
190
Webリテラシー基礎
takenawa
0
9.8k
ThingLink
matleenalaakso
28
4.1k
実務プログラム
takenawa
0
9.8k
Implicit and Cross-Device Interaction - Lecture 10 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
1.7k
アウトプット0のエンジニアが半年でアウトプットしまくった話 With JAWS-UG
masakiokuda
2
340
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Designing Experiences People Love
moore
142
24k
A better future with KSS
kneath
238
17k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
RailsConf 2023
tenderlove
30
1.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Transcript
;Γ͔͑Γ ϑϨʔϜϫʔΫ ৽ଔݚम 2019
͋ͳͨԿΛ͍ͯ͠Δਓʁ ࣗݾհ • ా ӳ༞(͑ʔͪΌΜ͞Μ) • ৽ଔ4 ΤϯδχΞ • ɹɹɹɹɹɹɹॴଐ
• ࣾ།ҰͷೝఆεΫϥϜϚελʔ • ࣾ;Γ͔͑Γܑ͓͞Μ • ϫʔΫγϣοϓ/ϑΝγϦςʔτ 2
ࠓͷత • ୈ̍෦ɿࠓޙͷݚमΛ 120 % ٵऩ͍ͯͨ͘͠Ίʹඞཁͳ͜ͱΛֶͿ • Ωʔϫʔυ: ڠௐֶश •
ୈ̎෦ɿ;Γ͔͑ΓͱͲ͏͍͏ͷ͔ΛֶͿ • Ωʔϫʔυ: ΧΠθϯɾײँɾϑϨʔϜϫʔΫ ͓ॻ͖ 3
ୈҰ෦ ʮֶͼʯ
ͳΜͰݚम ͢ΔΜͩΖ͏͔ʁ 5
͋ͳ͕ͨ࠷Ͱ ଐઌͷνʔϜͰ ׆༂ͯ͠Β͏ͨΊ 6
ѹతΠϯϓοτ ࣝͷྗ
ѱ͍ྫ • ݚमAड͚Δ • ݚमAΊͬͪΌֶΜͩ • ࣍ͷݚमB࢝·Δ • ݚमBΊͬͪΌֶΜͩ •
̍ऴΘͬͨʂࠓΊͬͪΌֶΜͩײʂ • ຊଐޙʮ͋Εʁ͜ΕͳΜ͚ͩͬʁʯ ѹతΠϯϓοτ 8
ैདྷͷֶशελΠϧ • ࣝୡܕ(ઌੜ͕ڭஃͰڭ͑Δख๏) • ͔ͬͨΑ͏Ͱ͔ͬͯͳ͍ঢ়ଶ • ࣮ࡍʹࣗͰΖ͏ͱ͢ΔͱͰ͖ͳ͍ঢ়ଶ ֶߍͷڭҭ 9
ϥʔχϯάϐϥϛου ֶशͷఆண 10
ݚमͷ׆͔͠ํ 11
ݐઃత૬ޓ࡞༻ • ࣗࣗͷߟ͑Λ֎ʹग़ͯ֬͠ೝͯ͠ΈΔ໘ • ଞͷਓͷݴ༿׆ಈΛฉ͍ͨΓݟͨΓͯ͠ɺࣗ ͷߟ͑ͱΈ߹ΘͤͯΑΓྑ͍ߟ͑Λ࡞Δ໘ ଞऀͱߟ͑ͳ͕ΒֶͿ 12
ݐઃత૬ޓ࡞༻ ଞऀͱߟ͑ͳ͕ΒֶͿ 13 ڠ ௐ ֶ श • ࣗࣗͷߟ͑Λ֎ʹग़ͯ֬͠ೝͯ͠ΈΔ໘ •
ଞͷਓͷݴ༿׆ಈΛฉ͍ͨΓݟͨΓͯ͠ɺࣗ ͷߟ͑ͱΈ߹ΘͤͯΑΓྑ͍ߟ͑Λ࡞Δ໘
ͳΜͰݚम ͢ΔΜͩΖ͏͔ʁ 14
͋ͳͨ19ଔશһ͕࠷Ͱ ଐઌͷνʔϜͰ ׆༂ͯ͠Β͏ͨΊ 15
Ͳ͜Ͱߟ͑Λग़͍͔ͯ͘͠ʁ 16
Ͳ͜Ͱߟ͑Λग़͍͔ͯ͘͠ʁ 17
ؾܰʹॻ͖ग़͢ Slack #rookies-2019 ΞτϓοτΛॻ͖ग़͢ • ϝϞΘΓʹͬͯେৎ • ࣭ਵ࣌ͦͪΒʹॻ͍ͯετοΫͯ͠Βͬͯେৎ • ࣗͷֶΜͩ͜ͱΛʮจʯͰॻ͖ग़͢
• ؒҧ͑ͯ୭ౖΒͳ͍ͷͰཧղΛਂΊΔͨΊʹੵۃతʹॻ͖ग़͢ • ઌഐ͑ͯ͘ΕΔ͔ʂʂ • ͦ͜Ͱฉ͍ͨΒϦΞϧλΠϜͰฦͯ͘͠Εͳ͍͔͠Εͳ͍͚Ͳɺߨ ࢣઈରʹ͑ͯ͘ΕΔ͔ΒͱΓ͋͑ͣॻ͘ 18
ઌഐͷ׆༻ྫ ͋Δͷࣾษڧձ 19
ઌഐͷ׆༻ྫ ͋Δͷࣾษڧձ 20 จͰࢥͬͨ͜ͱΛ ΨϯΨϯॻ͍͍ͯ͘
ઌഐͷ׆༻ྫ ͋Δͷࣾษڧձ 21 ڞײͨ͠Β ͔ͬ͠ΓϦΞΫγϣϯ͢Δ
ઌഐͷ׆༻ྫ ͋Δͷࣾษڧձ 22 ਂ۷ΓεϨουͰ
• ࣗࣗͷߟ͑Λ֎ʹग़ͯ֬͠ೝͯ͠ΈΔ໘ • ଞͷਓͷݴ༿׆ಈΛฉ͍ͨΓݟͨΓͯ͠ɺࣗ ͷߟ͑ͱΈ߹ΘͤͯΑΓྑ͍ߟ͑Λ࡞Δ໘ ݐઃత૬ޓ࡞༻ ଞऀͱߟ͑ͳ͕ΒֶͿ 23
ͳͥΦʔϓϯͳͰ ॻ͘ͷ͕͍͠ʁ 24
ؕΓ͕ͪͳ4ύλʔϯ ͍ΖΜͳෆ҆ʹऻΘΕΔ ແೳͱ ࢥΘΕΔෆ҆ ωΨςΟϒͱ ࢥΘΕΔෆ҆ ແͱ ࢥΘΕΔෆ҆ अຐΛ͍ͯ͠Δͱ ࢥΘΕΔෆ҆
25
ɹɹɹɹɹ ҆શͳॴ 26
ֶͼͦ͜͠ڠௐֶश ֤ݚमͰऴΘΓͷ࣌ؒʹֶͼ͠Λ͠·͠ΐ͏ • ͦͷݚमͰʮֶΜͩ͜ͱɾࢼͯ͠ΈΔ͜ͱɾײʯΛྡͷਓͱڞ༗ ͠·͠ΐ͏ • ͞ΒʹϖΞ(͘͠ࡾਓ)Ͱߨࢣͷਓʹ࣭Λߟ͍͑ͯͩ͘͞ • ฉ͖͍ͨ͠ͱ͍͏༰ͰେৎͰ͢ •
ଞͷਓ͕͍ͬͯΔ࣌ϝϞΛऔͬͨΓ PC ΛݟͨΓͤͣɺ͔ͬ͠Γ ฉ͍͍ͯ͋͛ͯͩ͘͞ • ͦͷֶͼ͕͋ͳͨͷཧղΛਂΊΔ͖͔͚ͬʹͳΔ͔͠Ε·ͤΜ 27
·ͱΊ • ݚमظؒѹతΠϯϓοτΛڧ੍తʹߦ͏ • डಈతʹݚमΛड͚Δͱֶशޮ͕ඇৗʹѱ͍ • ͦ͜Ͱ Slack ଞͷਓͱҙݟΛަ͋ͬͯ͠ཧղΛਂΊΔڠௐֶश ͱ͍͏ख๏Λհͨ͠
• ൃݴ͢Δ͜ͱͷෆ҆ײ͋Δͱࢥ͏͕ɺͦΕΛᄀΊͨΓౖͬͨΓ͢ Δਓډͳ͍ͷͰɺΨϯΨϯൃݴͯ͠ཉ͍͠ • ൃݴͯ͘͠Εͨਓʹ࠷େݶͷϦεϖΫτΛ࣋ͬͯͯ͠΄͍͠ 28
ୈ̍෦ ʙʙ
ୈ̎෦ ;Γ͔͑ΓϑϨʔϜϫʔΫ
;Γ͔͑Γͬͯ ͲΜͳΠϝʔδͰ͔͢ʁ (ྡͷਓͱ1ͯ͠Έ͍ͯͩ͘͞) 31
Ұൠతͳ;Γ͔͑ΓͷΠϝʔδ • লձͱಉ͡Πϝʔδ • ͋Δ࡞ۀΛߦͬͨ༰ͳͲΛݟ͢͜ͱ • ಥൃతʹىͬͨ͜՝ͷվળΛग़͢ • Λىͨ͜͠ਓ͕࠶܁Γฦ͞ͳ͍ͨΊʹͲ͏͢Δ͔ʁΛߟ͑Δ •
ظతͳܭըͷݟ͠Λߦ͏ • ͪΌΜͱͨ͠Γํ͕͋Δ͜ͱࣗମΒͳ͍ 32
ྑ͍;Γ͔͑Γͱѱ͍;Γ͔͑Γ ѱ͍;Γ͔͑ΓԿ͕μϝʁ ѱ͍;Γ͔͑Γ μϝϙΠϯτ ϓϩμΫτͷ ͚ͩग़ͯ͠ऴΘΓ ͕ى͜Βͳ͚Ε ;Γ͔͑Βͳ͍ ਓ֨ݸਓ߈ܸ͔Γ νʔϜͱͯ͠Λଊ͑ΒΕͯͳ͍
ԿͷͨΊͷ͔͔࣌ؒΒͳ͔ͬͨ ;Γ͔͑ΓͷҙਤΛཧղͰ͖ͯͳ͍ ूதͰ͖ͯͳ͍ 33
ѱ͍;Γ͔͑Γ ྑ͍;Γ͔͑Γ ϓϩμΫτͷ ͚ͩग़ͯ͠ऴΘΓ ʹରͯ͠ΧΠθϯΛग़͢ ਓ֨ݸਓ߈ܸ͔Γ νʔϜશһͰͲ͏Ε ΧΠθϯग़དྷΔ͔ʁΛ͠߹͏ ԿͷͨΊͷ͔͔࣌ؒΒͳ͔ͬͨ શһ͕ΧΠθϯʹ͔ͬͯ
ूதͰ͖͍ͯΔʹͳ͍ͬͯΔ 34 ѱ͍;Γ͔͑ΓԿ͕μϝʁ ྑ͍;Γ͔͑Γͱѱ͍;Γ͔͑Γ
;Γ͔͑Γָ͍͠ʂ ;Γ͔͑Γͷେલఏ ୭͔ΛΊΔͰͳ͍ ਓɾؔɾϓϩηεɾπʔϧ ΛΧΠθϯ͢Δ 35
ਓΛΊͳ͍ 36
μχΤϧɾΩϜͷ৫ͷޭ॥Ϟσϧ ؔͷ࣭ ࢥߟͷ࣭ ݁Ռͷ࣭ ߦಈͷ࣭ 37
ਓͷؔΛେࣄʹͤͣɺ݁ՌΛ͍ٻΊΔͱ… ରཱԡ͚ͭ͠ ໋ྩɾࢦ͕ࣔ૿͑Δ ड͚ͳࢥߟ ੑ͕ͳ͘ͳΔ ੵۃతʹߦಈ Ͱ͖ͳ͘ͳΔ ݁Ռ͕ ্͕Βͳ͍ 38
ᶄؔͷ࣭ ᶅࢥߟͷ࣭ ᶃ݁Ռͷ࣭ ᶆߦಈͷ࣭
·ͣؔͷ࣭Λ͋͛Δ͜ͱͰɺ݁Ռͷ࣭ΛߴΊΔ ๛͔ͳ ίϛϡχέʔγϣϯ ଟ༷Ͱ࣭ͷߴ͍ ΞΠσΞ ߹ҙͰܾΊ ೲಘͯ͠ߦಈ ظ͞Εͨ Ռ 39
ᶃؔͷ࣭ ᶄࢥߟͷ࣭ ᶆ݁Ռͷ࣭ ᶅߦಈͷ࣭
ΧΠθϯͱײँ 40
ܧଓྗͳΓ վળͱΧΠθϯ • վળ • ѱ͍ͱ͜ΖΛͯ͠ɺྑ͘͢Δߦಈ • ͕ͳ͍ͱվળ͢Δ͜ͱ͕Ͱ͖ͳ͍ • ΧΠθϯ
• ࠓطʹߦ͍ͬͯΔ͜ͱΛΑΓ্खʹߦ͏ͨΊʹ͢Δߦಈ • ͕ͳͯ͘ΧΠθϯग़དྷΔʂ 41
;Γ͔͑Γ͕ ָ͍͠ͷ ʹͳͬͯཉ͍͠ 42
;Γ͔͑ΓΛ ମݧͯ͠ΈΑ͏ʂ 43
̍ճ࿅शɺ̎ճຊ൪ ϨΰੵΈ্͛ήʔϜ • ೋਓ̍ʹͳ͍ͬͯͩ͘͞ • ࡞ઓTIME̍ɾ੍࡞TIME̎ • Ұ൪ߴ͘ੵΈ্͛ͨɿ̍Ґ̏ɾ̎Ґ̍ • ͬͨ৭͕গͳ͍ɿ̍Ґʹ̏ɾ̎Ґʹ̍
• ਅͬฏΒͳͭېࢭʂ • ଌఆ࣌ʹɺϨΰҎ֎ͷࢧ͑ແ͠Ͱཱ͍ࣗͯ͠Δ͜ͱ͕݅Ͱ͢ 44
ୈ̍ճ LEGOπϜπϜ 45
ελʔτʂ 46
ࠓͷ LEGOπϜπϜ Λ;Γ͔͑ͬͯΈΑ͏ 47
ਓɾؔ ϓϩηεɾπʔϧ 48
ਖ਼͍͠ᝦͷണ͕͠ํ ԼʹҾ͘ or ԣʹണ͕͢
ਖ਼͍͠ᝦͷണ͕͠ํ ԼʹҾ͘ or ԣʹണ͕͢
;Γ͔͑ΓͷԼ४උ σʔλΛऩू͢Δ(4) • ϨΰΛཱͯΔͷʹͲΜͳ͜ͱΛ͠·͔ͨ͠ʁ • ૬ํͱͷֻׂ͚୲ͲΜͳ͜ͱΛ͠·͔ͨ͠ʁ • Ռͱͯ͠ͲΜͳͷ͕Ͱ͖·͔ͨ͠ʁ • ࣌ؒͲΜͳײ͡Ͱ͔ͨ͠ʁ
51
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ ྑ͔ͬͨ͜ͱ (3 + 2) • ͳΔ͘ʮ͕ࣗͨ͠ʯͰͳ͘ʮνʔϜͰͰ͖ͨʯ͜ͱ Λॻ͖·͠ΐ͏ • σʔλ͔Βྑ͔ͬͨߦಈൃݴ͋Γ·͔ͨ͠ʁ
• ࣍ճଓ͚͍͖͍ͯͨߦಈൃݴ͋Γ·͔ͨ͠ʁ • ͥͻɺ૬ํ͞ΜͷײँΕͣʹ 52
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ ྑ͔ͬͨ͜ͱͷਂ۷Γ (3) • షΓग़ͯ͠ΒͬͨΑ͔ͬͨ͜ͱɺͳΜͰ࣮ݱͰ͖ͨΜ ͩΖ͏ʁ • ཁҼͱͳ͍ͬͯΔ෦ͳʹ͔͋Γ·͔͢ʁ • ଓ͚͍͖͍ͯͨྑ͔ͬͨ͜ͱ͋Γ·͢ʁ(ͦΕͳͥʁ)
• ᝦ͕͍ͬͺ͍ग़͍ͯΔॱͰਂ۷Γͯ͠Έ͍ͯͩ͘͞ 53
ѱ͔ͬͨ͜ͱ(3 + 2) • ͳΔ͘ʮ͕ࣗͨ͠ʯͰͳ͘ʮνʔϜͰͰ͖ͨʯ͜ͱ Λॻ͖·͠ΐ͏ • σʔλ͔Βѱ͔ͬͨߦಈൃݴ͋Γ·͔ͨ͠ʁ • ͋͘·ͰʮߦಈʯϕʔεͰߟ͍͑ͯͩ͘͞
• ઈରʹਓΛΊͳ͍Α͏ʹʂʂʂʂ ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ 54
ਓΛΊΔ = νʔϜͷ՝ʹͳͬͯͳ͍ • ΛᄀΊΔͷলձɺ;Γ͔͑ΓΧΠθϯͷ • ͦͷߦಈΛىͨ͜͠ͷʮͦͷਓʯͷͰ͔͢ʁ • νʔϜͱͯ͠ɺͦͷߦಈΛ͙͜ͱͰ͖ͳ͔ͬͨͷ͔ʁ •
ѱ͔ͬͨ͜ͱΛग़ͨ͠ਓɺνʔϜͷ՝ʹؾ͍ͮͨਓʂ ;Γ͔͑Γͷ͝๏ 55
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ ѱ͔ͬͨ͜ͱͷਂ۷Γ (3) • షΓग़ͯ͠Βͬͨѱ͔ͬͨ͜ͱͳΜͰى͖ͨΜͩΖ͏ʁ • ཁҼͱͳ͍ͬͯΔ෦ͳʹ͔͋Γ·͔͢ʁ • ઈରʹղܾ͍ͨ͠ѱ͔ͬͨ͜ͱ͋Γ·͢ʁ(ͦΕͳͥʁ) •
ᝦ͕͍ͬͺ͍ग़͍ͯΔॱͰਂ۷Γͯ͠Έ͍ͯͩ͘͞ 56
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ ࣍Δ͜ͱ (3 + 2) • ྑ͔ͬͨ͜ͱΛΑΓ্ख͘ߦ͏ͨΊʹͲ͏ͨ͠Β͍͍ʁ • ѱ͔ͬͨ͜ͱΛղܾ͢ΔͨΊʹͲ͏ͨ͠Β͍͍ʁ •
۩ମతʹͬͯΈΔ͜ͱΛॻ͖ग़͢ • ͜Μͳ͔͚͕͋ͬͨΒ͍͍Μ͡Όͳ͍͔ʁ 57
ΞΠσΞͷબ ࣍Δ͜ͱΛબ͢Δ (1) • ग़͖ͯͨ࣍Δ͜ͱͷதͰඞͣΔΞΠσΞΛܾΊͯͩ͘ ͍͞ • શ෦Ͱͳ͘ɺ̍ʙ̎ݸͰΦοέʔͰ͢ʂ • ܾΊͨͭඞ࣮ͣߦ͍ͯͩ͘͠͞
58
ୈ̎ճ LEGOπϜπϜ 59
ελʔτʂ 60
ຊདྷ͔͜͜Β ߋʹ;Γ͔͑Γ͢Δ 61
ΧΠθϯϧʔϓ εΫϥϜݚमଓ͘ 62
࣮ࡍʹԿΛ ߦ͍ͬͯͨͷ͔ʁ 63
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 64
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 65
ཱͪࢭ·ͬͯͱ͖߹͏ • Γଓ͚͍ͯΔͱࢹ͕ڱ͘ ͳͬͯ͠·͏ • શମ૾ΛݟΔ͜ͱ͕େࣄ • ҙࣝͯ͠શମΛݟΔͷ͍͠ • ى͍ͬͯ͜Δ͔ΒҰาҾ͍
ͯɺ࣍ʹ͖͢͜ͱΛྫྷ੩ʹߟ ͑Δ 66
ΈΜͳͰ͖߹͏ ΈΜͳͰݟΔ͜ͱͰ ͷશମ૾͕ݟΕΔ ͦͦʮʯΛ ݟ͍ͯΔͷͰ ਓʹ͕͍͔ͳ͍ ձͷதͰ ίϥϘϨʔγϣϯ͕ ੜ·ΕΔ
67
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 68
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 69
σʔλΛऩू͢Δ • νʔϜΠϕϯτ • ࣮ࡍͷ࡞ۀ࣌ؒ • ৽͍͠औΓΈ • डͨ͠Ҋ݅ •
OKR ͷୡ • ۀ࣌ؒ • ݸਓͷؾ࣋ͪ / ײ • ͲΜͳݚम͕͔͋ͬͨʁ • ͲΜͳൃݴΛ͔ͨ͠ʁ • ݚमͰֶΜͩ͜ͱ ۩ମతͰ͋Ε͋Δ΄Ͳ ;Γ͔͑Γ͕ॆ࣮͢Δ 70
ͳͥσʔλΛऩू͢Δ͔ʁ ࣌ؒ ྑ͔ͬͨ ѱ͔ͬͨ ϝʔϧΕ ॳडʂ ϊʔۀ ใࠂ࿙Ε ϑΥϩʔ ;Γ͔͑Γ
71
ͳͥσʔλΛऩू͢Δ͔ʁ ࣌ؒ ྑ͔ͬͨ ѱ͔ͬͨ ;Γ͔͑Γ 72 ϑΥϩʔ ϝʔϧΕ ॳडʂ ϊʔۀ
ใࠂ࿙Ε ੲ͗ͯ͢ΕΒΕΔ
ͳͥσʔλΛऩू͢Δ͔ʁ ࣌ؒ ྑ͔ͬͨ ѱ͔ͬͨ ϑΥϩʔ ;Γ͔͑Γ 73 ϝʔϧΕ ॳडʂ ϊʔۀ
ใࠂ࿙Ε ۙͷ ಥඈͳ͜ͱʹ ͯ͠͠·͏
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 74
ΞΠσΞΛग़͢ • ऩू͞Εͨσʔλ͔ΒύλʔϯΛݟग़͢ • σʔλͷੳ͕ऴΘ͍ͬͯΔͱͳ͓Γ͍͢ • ۙͳղܾࡦΑΓࠜຊతͳղܾΛ༏ઌ͢Δ • ୯ൃͷվળʹͳΒͳͣɺܧଓతʹΧΠθϯͰ͖ΔΑ͏ʹ͢Δ •
;Γ͔͑ΓͰҰ൪࣌ؒΛ͔͚Δ͖ॴ 75
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 76
ԿΛ͖͔ܾ͢ఆ͢Δ • ྻڍ͞ΕͨΞΠσΞͷத͔Β࠾༻͢ΔͷΛબͿ • ͯ͢Λ࣮ݱ͠Α͏ͱ͢ΔͷͰͳ͘ɺ࠾༻͢Δͷ̍ʙ̎ݸ • ࣍ͷ;Γ͔͑ΓͰɺΞΠσΞͰΧΠθϯͰ͖͍ͯΔ͔ʁΛධՁ͢Δ • ΧΠθϯ͢ΔͨΊͷΞΫγϣϯΧΠθϯ͢Δͷ͕;Γ͔͑Γ 77
ܧଓతͳΧΠθϯ
;Γ͔͑Γͷ ϑϨʔϜϫʔΫ 78
ࣾͰΑ͘ΘΕ͍ͯΔ̎ͭͷϑϨʔϜϫʔΫ • KPT • ײϕʔεͰ;Γ͔͑Δ • Keep: ྑ͔ͬͨ͜ͱ • Problem:
ѱ͔ͬͨ͜ͱ • Try: ࣍Δ͜ͱ • ൺֱతظؒͷ;Γ͔͑Γ • ͦΕͧΕผͳ͜ͱΛͬͨ࣌ • YWT • ࣄ࣮ϕʔεͰ;Γ͔͑Δ • Y: ͬͨ͜ͱ • W: Θ͔ͬͨ͜ͱ • Try: ࣍Δ͜ͱ • தظؒͷ;Γ͔͑Γ • શһ͕ಉ͜͡ͱΛͬͨ࣌ 79
ײϕʔεͰ;Γ͔͑Δ KPT Keep: ྑ͔ͬͨ͜ͱ σʔλͷऩू Problem: ɾ՝ Try: ࣍ʹΔ͜ͱ ΞΠσΞग़͠
ԿΛ͖͔ܾ͢ఆ͢Δ 80
ࣄ࣮ϕʔεͰ;Γ͔͑Δ YWT Y: ͬͨ σʔλͷऩू W: Θ͔ͬͨ Try: ࣍ʹΔ͜ͱ ΞΠσΞग़͠
ԿΛ͖͔ܾ͢ఆ͢Δ 81
͖ͬ͞ͷ ;Γ͔͑ΓΛ ;Γ͔͑ͬͯΈΔ 82
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 83
;Γ͔͑ΓͷԼ४උ Λઃఆ͢Δ • ͜͏ΔΜʂΛͪ͜Β͔Βఏࣔͯͦ͠Εʹૉʹैͬͯ Βͬͨ • KPT Λ͡Ίͯͷਓ͍ΔͷͰɺߟ͑Δํੑࣔͨ͠ • ;Γ͔͑Γ͕͍͢͠ڥͷͨΊɺᝦͱϖϯΛશһ༻
ҙͨ͠ 84
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 85
;Γ͔͑ΓͷԼ४උ σʔλΛऩू͢Δ(4) • ϨΰΛཱͯΔͷʹͲΜͳ͜ͱΛ͠·͔ͨ͠ʁ • ࡞Δաఔͷ • ૬ํͱͷֻׂ͚୲ͲΜͳ͜ͱΛ͠·͔ͨ͠ʁ • ίϛϡχέʔγϣϯͷ
• Ռͱͯ͠ͲΜͳͷ͕Ͱ͖·͔ͨ͠ʁ • Ͱ͖ͨͷ • ࣌ؒͲΜͳײ͡Ͱ͔ͨ͠ʁ • ࣮ͷ 86
σʔλΛऩू͢Δ • νʔϜΠϕϯτ • ࣮ࡍͷ࡞ۀ࣌ؒ • ৽͍͠औΓΈ • डͨ͠Ҋ݅ •
OKR ͷୡ • ۀ࣌ؒ • ݸਓͷؾ࣋ͪ / ײ • ͲΜͳݚम͕͔͋ͬͨʁ • ͲΜͳൃݴΛ͔ͨ͠ʁ • ݚमͰֶΜͩ͜ͱ ݸਓͷؾ࣋ͪ / ײҎ֎ ࣄલʹॻ͖ग़͢͜ͱՄೳ 87
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ Keep ྑ͔ͬͨ͜ͱ (3 + 2) • ͳΔ͘ʮ͕ࣗͨ͠ʯͰͳ͘ʮνʔϜͰͰ͖ͨʯ͜ͱ Λॻ͖·͠ΐ͏ •
σʔλ͔Βྑ͔ͬͨߦಈൃݴ͋Γ·͔ͨ͠ʁ • ࣍ճଓ͚͍͖͍ͯͨߦಈൃݴ͋Γ·͔ͨ͠ʁ • ͥͻɺ૬ํ͞ΜͷײँΕͣʹ ײతͳσʔλΛऩू 88
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ Keep ͷਂ۷Γ (3) • షΓग़ͯ͠Βͬͨ Keep ͳΜͰ࣮ݱͰ͖ͨΜͩΖ͏ʁ • ཁҼͱͳ͍ͬͯΔ෦ͳʹ͔͋Γ·͔͢ʁ
• ଓ͚͍͖͍ͯͨ Keep ͋Γ·͢ʁ(ͦΕͳͥʁ) • ᝦ͕͍ͬͺ͍ग़͍ͯΔॱͰਂ۷Γͯ͠Έ͍ͯͩ͘͞ ײతͳσʔλΛऩू 89
Problem ѱ͔ͬͨ͜ͱ(3 + 2) • ͳΔ͘ʮ͕ࣗͨ͠ʯͰͳ͘ʮνʔϜͰͰ͖ͨʯ͜ͱ Λॻ͖·͠ΐ͏ • σʔλ͔Βѱ͔ͬͨߦಈൃݴ͋Γ·͔ͨ͠ʁ •
͋͘·ͰʮߦಈʯϕʔεͰߟ͍͑ͯͩ͘͞ • ઈରʹਓΛΊͳ͍Α͏ʹʂʂʂʂ ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ 90 ײతͳσʔλΛऩू
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ Problem ͷਂ۷Γ (3) • షΓग़ͯ͠Βͬͨ Problem ͳΜͰى͖ͨΜͩΖ͏ʁ • ཁҼͱͳ͍ͬͯΔ෦ͳʹ͔͋Γ·͔͢ʁ
• ઈରʹղܾ͍ͨ͠ Problem ͋Γ·͢ʁ(ͦΕͳͥʁ) • ᝦ͕͍ͬͺ͍ग़͍ͯΔॱͰਂ۷Γͯ͠Έ͍ͯͩ͘͞ 91 ײతͳσʔλΛऩू
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 92
ऩूͨ͠σʔλΛੳ͍ͯ͜͠͏ Try ࣍Δ͜ͱ (3 + 2) • Keep ΛΑΓ্ख͘ߦ͏ͨΊʹͲ͏ͨ͠Β͍͍ʁ •
100 % → 120 % ʹ͢ΔͨΊͷΧΠθϯ • Problem Λղܾ͢ΔͨΊʹͲ͏ͨ͠Β͍͍ʁ • 80 % → 100 % ʹ͢ΔͨΊͷΧΠθϯ • ۩ମతʹͬͯΈΔ͜ͱΛॻ͖ग़͢ • ͜Μͳ͔͚͕͋ͬͨΒ͍͍Μ͡Όͳ͍͔ʁ 93
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 94
ΞΠσΞͷબ Try Λબ͢Δ (1) • ग़͖ͯͨ Try ͷதͰඞͣΔΞΠσΞΛܾΊ͍ͯͩ͘͞ • શ෦Ͱͳ͘ɺ̍ʙ̎ݸͰΦοέʔͰ͢ʂ
• Կ͕͖͔͚ͬͰมԽͨ͠ͷ͔͕͔Γ͘͢ͳΔ • ࣍ͷ;Γ͔͑ΓͰͬͯΈͯͲ͏͔ͩͬͨΛ;Γ͔͑Δ • ܾΊͨͭඞ࣮ͣߦ͍ͯͩ͘͠͞ 95
;Γ͔͑ΓΛΧΠθϯͷʹ͢Δ̑εςοϓ Λઃఆ͢Δ σʔλΛऩू͢Δ ΞΠσΞΛग़͢ ԿΛ͖͔ܾ͢ఆ͢Δ ;Γ͔͑ΓΛऴྃ͢Δ 96
;Γ͔͑Γͷ;Γ͔͑Γ ;Γ͔͑ΓΛऴྃ͢Δ • ͦͷ;Γ͔͑ΓʹࢀՃͨ͠ਓ͕ຬͰ͖͍ͯΔ͔ʁ • νʔϜʹͱͬͯ;Γ͔͑Γ্͕ख͘ߦ͍͑ͯΔ͔ʁ • ࣌ؒௐΛ͢Δඞཁͳ͔͔ͬͨʁΛߟ͑Δ • ;Γ͔͑ΓΛ;Γ͔͑Δ͜ͱͰ࣍ͷ;Γ͔͑Γ͕ΑΓྑ͍
ΧΠθϯͷʹͳΔͨΊʹͲ͏͢Ε͍͍͔Λߟ͑Δ 97
͜͜·Ͱ͕ ;Γ͔͑ΓͷΓํͷ 98
Ͳ͏ͬͯݚमʹ ;Γ͔͑ΓΛ׆͔͔͢ʁ 99
͋ͳͨ19ଔશһ͕࠷Ͱ ଐઌͷνʔϜͰ ׆༂ͯ͠Β͏ͨΊ 100
׆͔͠ํ ݚमͷड͚ํΛ;Γ͔͑ͬͯΈΔ • ͜ΜͳൃݴΛͯ͠Έͨ(͜Μͳ࣭Λͯ͠Έͨ) • ϝϞͷͱΓํͱͯ͠ Slack ʹ͜Μͳ෩ʹॻ͍ͯΈͨ • ͦΕΛͬͱྑ͘͢Δʹ͜͏ͨ͠Β͍͍Μ͡Όͳ͍͔ʁ
• ΈΜͳͰɺ͍͍ΓํΛݟ͚ͭͯΧΠθϯ͍ͯ͘͠ 101 ΈΜͳͷֶͼͷ࠷େԽΛࢦͯ͠΄͍͠
ݸਓͰͰ͖Δ ;Γ͔͑Γ 102
ใ 103
ॻ͔͞Ε͍ͯΔ͔Βॻ͘ͳΒॻ͔ͳ͍͍ͯ͘ ຖͷ;Γ͔͑Γͷ • ใΛॻ͘తΛߟ͑ͯΈΑ͏ • ຖͷֶͼͷ;Γ͔͑ΓͷͨΊʹॻ͘ͱͨ͠ΒɺͲΜͳ ϑΥʔϚοτ͕ద͍ͯ͠ΔͩΖ͏͔ʁ • ;Γ͔͑Γͷ̑εςοϓʹԊͬͯͲΜͳใʹ͢Ε͍͍ ͔ߟ͑ͯΈΑ͏(॓)
• େࣄͳͷɺใ͕΄Μͱʹ͜ΕͰ͍͍ͷ͔ͳʁΛৗʹߟ ͑Δ͜ͱ 104
·ͱΊ 105
͋ΕͰ͖ͯͳ͍… ͜ΕͰ͖ͯͳ͍… 106
ࠓ͜Ε͕Ͱ͖ͨʂ ໌͜͏ͯ͠ΈΑ͏ʂ 107
࣍ͷΞΫγϣϯ͕ ࢥ͍͔ͭͳ͍… 108
՝͕ݟ͚͑ͨͩͰ ͍͢͝͡ΌΜʂ 109
;Γ͔͑Γ͕ ָ͍͠ͷ ʹͳͬͯཉ͍͠ 110
;Γ͔͑Γָ͍͠ʂ ·ͱΊ • ;Γ͔͑ΓΧΠθϯͷͰ͢Αʂ • ;Γ͔͑Γख๏ͷҰͭͰ͋Δ KPT ʹ͍ͭͯମݧͯ͠Β͍·ͨ͠ • ;Γ͔͑Γͷ̑ͭͷεςοϓΛҙࣝ͢ΕΑΓॆ࣮ͨ͠;͔͑Γ͕
Ͱ͖Δ • ݸਓͷ;Γ͔͑ΓใΛ׆༻ͯ͠ΈΔ • Ͱ͖Δ͜ͱΛ૿ͤΔϫΫϫΫײͰϨοπΤϯδϣΠʂ
ୈ̎෦ ʙʙ
ֶͼͦ͜͠ڠௐֶश ֶͼ͠ͷ࣌ؒͰ͢ • ͦͷݚमͰʮֶΜͩ͜ͱɾࢼͯ͠ΈΔ͜ͱɾײʯΛྡͷਓͱڞ༗ ͠·͠ΐ͏ • ͞ΒʹϖΞͰߨࢣͷਓʹ࣭Λߟ͍͑ͯͩ͘͞ • ฉ͖͍ͨ͠ͱ͍͏༰ͰେৎͰ͢ •
ଞͷਓ͕͍ͬͯΔ࣌ϝϞΛऔͬͨΓ PC ΛݟͨΓͤͣɺ͔ͬ͠Γ ฉ͍͍ͯ͋͛ͯͩ͘͞ • ͦͷֶͼ͕͋ͳͨͷཧղΛਂΊΔ͖͔͚ͬʹͳΔ͔͠Ε·ͤΜ 113