Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
reinvent-ml-mini-con
Search
ryo nakamaru
December 09, 2016
Technology
0
2.8k
reinvent-ml-mini-con
JAWS-UG AI 支部 #2 での登壇資料です
ryo nakamaru
December 09, 2016
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.3k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
190
Firecracker とは何か/what is Firecracker
pottava
13
5.3k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
410
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.1k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.2k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.4k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
460
Other Decks in Technology
See All in Technology
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
580
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
380
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
Lambdaと地方とコミュニティ
miu_crescent
2
370
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
Terraform Stacks入門 #HashiTalks
msato
0
350
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
120
複雑なState管理からの脱却
sansantech
PRO
1
140
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
180
AGIについてChatGPTに聞いてみた
blueb
0
130
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
220
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Code Review Best Practice
trishagee
64
17k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Happy Clients
brianwarren
98
6.7k
Become a Pro
speakerdeck
PRO
25
5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Site-Speed That Sticks
csswizardry
0
23
Scaling GitHub
holman
458
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Designing for humans not robots
tammielis
250
25k
Transcript
AWS Ͱ࢝ΊΔ DeepLearning re:Invent 2016 Machine Learning Mini Con ࢀՃใࠂ
JAWS-UG AI ࢧ෦ @ 2016.12.09
@pottava SUPINF Inc.
͍͖ͳΓͰ͕͢
FizzBuzz ͍ͬͯΔਓʙʁ
FizzBuzz ॻ͚Δਓʙʁ
ɹfor i in range(1,101): ɹ if i % 15 ==
0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ɹͰ͢Ͷɺྫ͑ɻ
Ͱ
ػցֶशͰ FizzBuzz ղ͚Δਓʙʁ
ʁʁʁ
ίϯϐϡʔλʹσʔλΛͯ͠ ύλʔϯΛݟ͚ͭͤ͞Δ
Ξϓϩʔν Ͳ͏ղ͔͘ ໋ྩత ɹfor i in range(1,101): ɹ if i
% 15 == 0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ػցֶश େྔͷσʔλΛ͠... ༧ଌਫ਼ΛߴΊΔ... parameter result 6 Fizz 7 7 10 Buzz 30 FizzBuzz …
Ҏ্ɺͱ͋ΔϫʔΫγϣοϓͰͷ ΞΠεϒϨΠΫͰͨ͠ɻ
ຊ
AWS Ͱ࢝ΊΔ DeepLearning
ࠓͷ ɾ࠷ۙ͋ͬͨ Amazon ػցֶशܥχϡʔεͱ DL ɾre:Invent Machine Learning Mini Con
ใࠂ ɾMXNet ʹ͍ͭͯ ɾϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
Amazon ػցֶशܥχϡʔε
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Echo ɾAmazonʮୈ࢛ͷऩӹͷபʯ 2020 ·Ͱʹ 110 ԯυϧՔ͙ ɹਓೳΞγελϯτʮAlexaʯͱ ɹԻίϯτϩʔϥʔͷʮEchoʯ ɹhttp://thebridge.jp/2016/09/amazon-echo-alexa-add-11-billion-in-revenue-by-2020-2016-9-pickupnews
ɾhttps://www.amazon.jobs/en/teams/alexa ɾre:Invent Ͱ echo dot ͕ࢀՃऀʹΒΕ·ͨ͠
Amazon Echo
Amazon Echo Alexa ʹԻͰ͓ئ͍ɾ࣭͢ΔͨΊͷσόΠεɻ ʢAlexa Amazon ͕։ൃͨ͠ AI ʣ
ʮΞϨΫαɺUber ΛݺΜͰɻࠓͷఱؾʁ ʯ ʮΞϨΫαɺ͜ͷۂͷԋऀ୭ʁԻྔΛ্͛ͯʯ
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢ Amazon Lex
Amazon Polly
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Go
Amazon Go 1. ೖళ࣌ɺήʔτʹεϚϗΞϓϦΛ͔͟͢ 2. ΄͍͠ͷΛόοάʹೖΕΔ 3. ͓ళΛग़Δ Coming early
2017 !! 2131 7th Ave Seattle, Washington
Amazon Rekognition ଞࣾͰΜͳ Computer vision API ͷҰछɻ
Amazon Rekognition ਂֶशϕʔεͷը૾ೝࣝ APIɻ ɾҰൠମ / ܠݕग़ ɾදੳ ɾإͷྨࣅఆ
Amazon Rekognition ͬͯΈͨ
Amazon Rekognition ฐࣾ༐ऀͷ ྨࣅఆɻ
re:Invent Machine Learning Mini Con
Machine Learning Mini Con ɾػցֶशܥͷηογϣϯ / ϫʔΫγϣοϓ ɾhttp://bit.ly/reinvent-2016-ml ɾࠓ 17
ηογϣϯ ɾϫʔΫγϣοϓҎ֎ YouTube ͰݟΕ·͢
ೖฤ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC202: Alexa ʹ͓͚Δਂֶश ɾMAC203:
Amazon Rekognition ͷ͝հ ɾMAC204: Amazon Polly ͷ͝հ ɾMAC205: ΫϥυΒ͘͠εέʔϧ͢Δਂֶश: ɹɹɹɹɹ AWS Ͱ Caffe ΛεέʔϧΞοϓͯ͠ϏσΦݕࡧΛվળ͢Δ ɾMAC206: ػցֶशͷݱঢ়
தڃฤ ɾMAC301: ਂֶशͰͷϓϩηεΛม͍͑ͯ͘ ɾMAC302: ෆಈ࢈Ͱͷઓུత༏ҐͷͨΊʹ Amazon ML, Redshift, S3 σʔλϨΠΫΛ׆༻͢Δ
ɾMAC303: Amazon EMR ͱ Apache Spark ͰΫϥεྨͱ ϨίϝϯσʔγϣϯΤϯδϯΛ։ൃ͢Δ ɾMAC304: Amazon Lex ͷ͝հ ɾMAC306: MXNet ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC306-R: MXNet Λͬͨਂֶश
தڃฤ ɾMAC307: Predicting Customer Churn with Amazon ML ɾMAC308: ϫʔΫγϣοϓ:
Amazon Lex, Amazon Polly ͦͯ͠ Amazon Rekognition ΛͬͨϋϯζΦϯ ɾMAC309: Amazon Polly ͱ Amazon Lex ͷ͝հ
্ڃฤ ɾMAC401: Scalable Deep Learning Using MXNet ɾMAC403: Automatic Grading
of Diabetic Retinopathy ɹɹɹɹɹ through Deep Learning
ৄࡉ YouTube ͱ Slideshare Ͱ
ϐοΫΞοϓ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC206: ػցֶशͷݱঢ় ɾMAC306: MXNet
ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC401: Scalable Deep Learning Using MXNet
MAC201 Mechanical Turk Ͱػցֶश༻σʔλΛ࡞Δ ɾhttps://www.youtube.com/watch?v=vRtLdeNl7Tg ɾେྔͷɺߴ࣭ͳσʔληοτूΊʹ͍͘ ɾϝΧχΧϧλʔΫʹͦͷ࡞Λґཔ͢Δ
MAC206 Amazon ۀ͔Β࠷৽ AI αʔϏε·Ͱհ ɾhttps://www.youtube.com/watch?v=HqsUfyu0XJc ɾDeep Learning AMI, MXNet,
Alexa ͳͲͳͲ.. ɾޙܯʹαʔϏεఏڙ͢ΔϞτϩʔϥͷࣄྫ
MXNet
ֶशϑϨʔϜϫʔΫ ͲΕ͕͓ΈͰ͔͢ɾɾʁ MXNet / TensorFlow / Caffe / Chainerɻ ɾͲͷχϡʔϥϧωοτ͏ͷʁCNNʁRNNʁ
ɾGPU ͏ͷʁCPU ͚ͩʁෳϊʔυ͏ʁ ɾࠃ࢈ΛԠԉʁ
AWS MXNet Ұײ͋Δ ɾ͑ɺAmazon DSSTNE ɾɾ ɾͱ͍͑ଞͷݕ౼͍ͨ͠ํͪ͜Β ɹ CMP314:
Bringing Deep Learning to the Cloud with Amazon EC2 https://www.youtube.com/watch?v=34Xorby_pyw
MAC306 Netflix ͷϨίϝϯυྫΛ௨ͯ͡ DL / MXNet Λৄઆ ɾhttps://www.youtube.com/watch?v=cftJAuwKWkA ɾDeep Learning
ͷॳา͔Βɻͱ͔ͯΓ͍͢ ɾGitHub ͷ MXNet ϦϙδτϦʹ͋ΔαϯϓϧΛσϞ https://github.com/dmlc/mxnet/tree/master/example/recommenders
ϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
ϫʔΫγϣοϓʁ ϋϯζΦϯܗ͕ࣜଟ͍ɻάϧʔϓϫʔΫ͋ͬͨΓɻ ɾ࣮ࡍʹखΛಈ͔͢ͷͰͱͯཧղ͕ਐΉ ɾ·ΘΓͷࢀՃऀͱͷίϛϡχέʔγϣϯ .. !! ɾre:Invent ʹߦ͘ͳΒ௨ৗηογϣϯΑΓΦεεϝ
MAC401 ECS ্Ͱ MXNet ʹΑΔ DL ͷֶशɾਪΛମݧ ɾECS ͷ Runtask
+ CPU ͷΈ ɾGitHub ͷ awslabs ϦϙδτϦΛར༻ https://github.com/awslabs/ecs-deep-learning-workshop/
ࢼ͢ͷͱͯ؆୯ CloudFormation ʹΑΔ EC2 / ECS ੜɻͦͷޙ.. ɾLab 3: ECS
Ͱ MXNet ͷ Jupyter notebook ىಈ ɾLab 4: MXNet ʹΑΔը૾ͷΫϥεྨ ɾLab 5: ECS λεΫͱͯ͠ը૾ΛΫϥεྨ
Deep Learning AMI http://qiita.com/pottava/items/c79117089be2406b127f
͓Βͤ
དྷि JAWS-UG ίϯςφࢧ෦
ECS Λத৺ʹɺίϯςφ·ΘΓͷ࠷৽ใΛ͓ಧ͚ʂ http://jawsug-container.connpass.com/
Amazon ECS ɾࠓ ECS ͰδϣϒΛΒͤΔηογϣϯ͕ෳ ɾMXNet on ECS ͷϫʔΫγϣοϓੈքͰਓؾ ɾECS
Ϋϥελ্Ͱ MXNet ͷֶशɾਪ
AWS Batch ɾECS ্ʹ HPC ۀքͷҙຯʹ͍ۙΫϥελΛߏஙɻ ɾδϣϒεέδϡʔϥ ≠ ίϯςφք۾ͷεέδϡʔϥ ɾECS
্ͳͷͰɺ࣮ίϯςφϕʔε ɾGlue EFS ͱͷΈ߹Θͤॏཁ
͓ΘΓ
גࣜձࣾεϐϯϑ ΞΠσΟΞΛ͔ͨͪʹʂ +
http://prtimes.jp/main/html/rd/p/000000007.000007768.html Comfy for Docker ϓϩδΣΫτͷ Docker ಋೖɾ։ൃࢧԉɾӡ༻ࢹߦΛ͍ͨ͠·͢ɻ ʢGCP / Azure
ͪΖΜରԠ͍ͯ͠·͢ɾɾʣ https://www.supinf.co.jp/service/dockersupport/
͝૬ஊ͓ؾܰʹͪ͜Β·Ͱ.. 57 <Thank you !! https://www.supinf.co.jp/service/dockersupport/