Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
reinvent-ml-mini-con
Search
ryo nakamaru
December 09, 2016
Technology
0
2.9k
reinvent-ml-mini-con
JAWS-UG AI 支部 #2 での登壇資料です
ryo nakamaru
December 09, 2016
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.5k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
210
Firecracker とは何か/what is Firecracker
pottava
12
5.4k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
440
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.2k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.4k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
490
Other Decks in Technology
See All in Technology
AWSで始める実践Dagster入門
kitagawaz
1
750
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
490
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
Create Ruby native extension gem with Go
sue445
0
130
エンジニアが主導できる組織づくり ー 製品と事業を進化させる体制へのシフト
ueokande
1
110
Apache Spark もくもく会
taka_aki
0
140
KotlinConf 2025_イベントレポート
sony
1
140
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
1.1k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.8k
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
320
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.3k
Snowflake Intelligence × Document AIで“使いにくいデータ”を“使えるデータ”に
kevinrobot34
1
120
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Gamification - CAS2011
davidbonilla
81
5.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Building Applications with DynamoDB
mza
96
6.6k
A Tale of Four Properties
chriscoyier
160
23k
The Invisible Side of Design
smashingmag
301
51k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Unsuck your backbone
ammeep
671
58k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Visualization
eitanlees
148
16k
Transcript
AWS Ͱ࢝ΊΔ DeepLearning re:Invent 2016 Machine Learning Mini Con ࢀՃใࠂ
JAWS-UG AI ࢧ෦ @ 2016.12.09
@pottava SUPINF Inc.
͍͖ͳΓͰ͕͢
FizzBuzz ͍ͬͯΔਓʙʁ
FizzBuzz ॻ͚Δਓʙʁ
ɹfor i in range(1,101): ɹ if i % 15 ==
0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ɹͰ͢Ͷɺྫ͑ɻ
Ͱ
ػցֶशͰ FizzBuzz ղ͚Δਓʙʁ
ʁʁʁ
ίϯϐϡʔλʹσʔλΛͯ͠ ύλʔϯΛݟ͚ͭͤ͞Δ
Ξϓϩʔν Ͳ͏ղ͔͘ ໋ྩత ɹfor i in range(1,101): ɹ if i
% 15 == 0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ػցֶश େྔͷσʔλΛ͠... ༧ଌਫ਼ΛߴΊΔ... parameter result 6 Fizz 7 7 10 Buzz 30 FizzBuzz …
Ҏ্ɺͱ͋ΔϫʔΫγϣοϓͰͷ ΞΠεϒϨΠΫͰͨ͠ɻ
ຊ
AWS Ͱ࢝ΊΔ DeepLearning
ࠓͷ ɾ࠷ۙ͋ͬͨ Amazon ػցֶशܥχϡʔεͱ DL ɾre:Invent Machine Learning Mini Con
ใࠂ ɾMXNet ʹ͍ͭͯ ɾϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
Amazon ػցֶशܥχϡʔε
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Echo ɾAmazonʮୈ࢛ͷऩӹͷபʯ 2020 ·Ͱʹ 110 ԯυϧՔ͙ ɹਓೳΞγελϯτʮAlexaʯͱ ɹԻίϯτϩʔϥʔͷʮEchoʯ ɹhttp://thebridge.jp/2016/09/amazon-echo-alexa-add-11-billion-in-revenue-by-2020-2016-9-pickupnews
ɾhttps://www.amazon.jobs/en/teams/alexa ɾre:Invent Ͱ echo dot ͕ࢀՃऀʹΒΕ·ͨ͠
Amazon Echo
Amazon Echo Alexa ʹԻͰ͓ئ͍ɾ࣭͢ΔͨΊͷσόΠεɻ ʢAlexa Amazon ͕։ൃͨ͠ AI ʣ
ʮΞϨΫαɺUber ΛݺΜͰɻࠓͷఱؾʁ ʯ ʮΞϨΫαɺ͜ͷۂͷԋऀ୭ʁԻྔΛ্͛ͯʯ
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢ Amazon Lex
Amazon Polly
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Go
Amazon Go 1. ೖళ࣌ɺήʔτʹεϚϗΞϓϦΛ͔͟͢ 2. ΄͍͠ͷΛόοάʹೖΕΔ 3. ͓ళΛग़Δ Coming early
2017 !! 2131 7th Ave Seattle, Washington
Amazon Rekognition ଞࣾͰΜͳ Computer vision API ͷҰछɻ
Amazon Rekognition ਂֶशϕʔεͷը૾ೝࣝ APIɻ ɾҰൠମ / ܠݕग़ ɾදੳ ɾإͷྨࣅఆ
Amazon Rekognition ͬͯΈͨ
Amazon Rekognition ฐࣾ༐ऀͷ ྨࣅఆɻ
re:Invent Machine Learning Mini Con
Machine Learning Mini Con ɾػցֶशܥͷηογϣϯ / ϫʔΫγϣοϓ ɾhttp://bit.ly/reinvent-2016-ml ɾࠓ 17
ηογϣϯ ɾϫʔΫγϣοϓҎ֎ YouTube ͰݟΕ·͢
ೖฤ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC202: Alexa ʹ͓͚Δਂֶश ɾMAC203:
Amazon Rekognition ͷ͝հ ɾMAC204: Amazon Polly ͷ͝հ ɾMAC205: ΫϥυΒ͘͠εέʔϧ͢Δਂֶश: ɹɹɹɹɹ AWS Ͱ Caffe ΛεέʔϧΞοϓͯ͠ϏσΦݕࡧΛվળ͢Δ ɾMAC206: ػցֶशͷݱঢ়
தڃฤ ɾMAC301: ਂֶशͰͷϓϩηεΛม͍͑ͯ͘ ɾMAC302: ෆಈ࢈Ͱͷઓུత༏ҐͷͨΊʹ Amazon ML, Redshift, S3 σʔλϨΠΫΛ׆༻͢Δ
ɾMAC303: Amazon EMR ͱ Apache Spark ͰΫϥεྨͱ ϨίϝϯσʔγϣϯΤϯδϯΛ։ൃ͢Δ ɾMAC304: Amazon Lex ͷ͝հ ɾMAC306: MXNet ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC306-R: MXNet Λͬͨਂֶश
தڃฤ ɾMAC307: Predicting Customer Churn with Amazon ML ɾMAC308: ϫʔΫγϣοϓ:
Amazon Lex, Amazon Polly ͦͯ͠ Amazon Rekognition ΛͬͨϋϯζΦϯ ɾMAC309: Amazon Polly ͱ Amazon Lex ͷ͝հ
্ڃฤ ɾMAC401: Scalable Deep Learning Using MXNet ɾMAC403: Automatic Grading
of Diabetic Retinopathy ɹɹɹɹɹ through Deep Learning
ৄࡉ YouTube ͱ Slideshare Ͱ
ϐοΫΞοϓ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC206: ػցֶशͷݱঢ় ɾMAC306: MXNet
ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC401: Scalable Deep Learning Using MXNet
MAC201 Mechanical Turk Ͱػցֶश༻σʔλΛ࡞Δ ɾhttps://www.youtube.com/watch?v=vRtLdeNl7Tg ɾେྔͷɺߴ࣭ͳσʔληοτूΊʹ͍͘ ɾϝΧχΧϧλʔΫʹͦͷ࡞Λґཔ͢Δ
MAC206 Amazon ۀ͔Β࠷৽ AI αʔϏε·Ͱհ ɾhttps://www.youtube.com/watch?v=HqsUfyu0XJc ɾDeep Learning AMI, MXNet,
Alexa ͳͲͳͲ.. ɾޙܯʹαʔϏεఏڙ͢ΔϞτϩʔϥͷࣄྫ
MXNet
ֶशϑϨʔϜϫʔΫ ͲΕ͕͓ΈͰ͔͢ɾɾʁ MXNet / TensorFlow / Caffe / Chainerɻ ɾͲͷχϡʔϥϧωοτ͏ͷʁCNNʁRNNʁ
ɾGPU ͏ͷʁCPU ͚ͩʁෳϊʔυ͏ʁ ɾࠃ࢈ΛԠԉʁ
AWS MXNet Ұײ͋Δ ɾ͑ɺAmazon DSSTNE ɾɾ ɾͱ͍͑ଞͷݕ౼͍ͨ͠ํͪ͜Β ɹ CMP314:
Bringing Deep Learning to the Cloud with Amazon EC2 https://www.youtube.com/watch?v=34Xorby_pyw
MAC306 Netflix ͷϨίϝϯυྫΛ௨ͯ͡ DL / MXNet Λৄઆ ɾhttps://www.youtube.com/watch?v=cftJAuwKWkA ɾDeep Learning
ͷॳา͔Βɻͱ͔ͯΓ͍͢ ɾGitHub ͷ MXNet ϦϙδτϦʹ͋ΔαϯϓϧΛσϞ https://github.com/dmlc/mxnet/tree/master/example/recommenders
ϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
ϫʔΫγϣοϓʁ ϋϯζΦϯܗ͕ࣜଟ͍ɻάϧʔϓϫʔΫ͋ͬͨΓɻ ɾ࣮ࡍʹखΛಈ͔͢ͷͰͱͯཧղ͕ਐΉ ɾ·ΘΓͷࢀՃऀͱͷίϛϡχέʔγϣϯ .. !! ɾre:Invent ʹߦ͘ͳΒ௨ৗηογϣϯΑΓΦεεϝ
MAC401 ECS ্Ͱ MXNet ʹΑΔ DL ͷֶशɾਪΛମݧ ɾECS ͷ Runtask
+ CPU ͷΈ ɾGitHub ͷ awslabs ϦϙδτϦΛར༻ https://github.com/awslabs/ecs-deep-learning-workshop/
ࢼ͢ͷͱͯ؆୯ CloudFormation ʹΑΔ EC2 / ECS ੜɻͦͷޙ.. ɾLab 3: ECS
Ͱ MXNet ͷ Jupyter notebook ىಈ ɾLab 4: MXNet ʹΑΔը૾ͷΫϥεྨ ɾLab 5: ECS λεΫͱͯ͠ը૾ΛΫϥεྨ
Deep Learning AMI http://qiita.com/pottava/items/c79117089be2406b127f
͓Βͤ
དྷि JAWS-UG ίϯςφࢧ෦
ECS Λத৺ʹɺίϯςφ·ΘΓͷ࠷৽ใΛ͓ಧ͚ʂ http://jawsug-container.connpass.com/
Amazon ECS ɾࠓ ECS ͰδϣϒΛΒͤΔηογϣϯ͕ෳ ɾMXNet on ECS ͷϫʔΫγϣοϓੈքͰਓؾ ɾECS
Ϋϥελ্Ͱ MXNet ͷֶशɾਪ
AWS Batch ɾECS ্ʹ HPC ۀքͷҙຯʹ͍ۙΫϥελΛߏஙɻ ɾδϣϒεέδϡʔϥ ≠ ίϯςφք۾ͷεέδϡʔϥ ɾECS
্ͳͷͰɺ࣮ίϯςφϕʔε ɾGlue EFS ͱͷΈ߹Θͤॏཁ
͓ΘΓ
גࣜձࣾεϐϯϑ ΞΠσΟΞΛ͔ͨͪʹʂ +
http://prtimes.jp/main/html/rd/p/000000007.000007768.html Comfy for Docker ϓϩδΣΫτͷ Docker ಋೖɾ։ൃࢧԉɾӡ༻ࢹߦΛ͍ͨ͠·͢ɻ ʢGCP / Azure
ͪΖΜରԠ͍ͯ͠·͢ɾɾʣ https://www.supinf.co.jp/service/dockersupport/
͝૬ஊ͓ؾܰʹͪ͜Β·Ͱ.. 57 <Thank you !! https://www.supinf.co.jp/service/dockersupport/