Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
reinvent-ml-mini-con
Search
ryo nakamaru
December 09, 2016
Technology
0
2.8k
reinvent-ml-mini-con
JAWS-UG AI 支部 #2 での登壇資料です
ryo nakamaru
December 09, 2016
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.3k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
190
Firecracker とは何か/what is Firecracker
pottava
13
5.2k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
400
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.2k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.4k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
450
Other Decks in Technology
See All in Technology
入社半年(合計1年)でGoogle Cloud 認定を全冠した秘訣🤫
risatube
1
240
YAPC::Hakodateの映像記録を支える技術
godan
4
380
Databricks Appのご紹介
databricksjapan
0
360
品質マネジメントで抑えておきたい2つのリスクを見分けて未来に備えよう #yapcjapan
makky_tyuyan
0
120
怖くないオフライン機能開発 〜基本的な技術で実現する現場向けオフライン機能 / Developing offline functions without fear ~ Offline functions for the field realized with basic technology
kaminashi
1
110
From naive to advanced RAG: the complete guide
glaforge
0
240
OPENLOGI Company Profile for engineer
hr01
1
12k
Graph Database と Generative AI の素敵な関係
oracle4engineer
PRO
9
1.7k
tenntennはなんでnewmoにnew社したの? - YAPC::Hakodate 2024
tenntenn
PRO
0
310
軽いノリで"自動化"に取り組んではいけないという話
tetsuyaooooo
1
600
Azure Verified Moduleを触って分かった注目ポイント/azure-verified-module-begin
mhrtech
1
490
Efficient zero-copy networking using io_uring
ennael
PRO
0
400
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
19
2.9k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
7.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
Design by the Numbers
sachag
278
19k
How to train your dragon (web standard)
notwaldorf
87
5.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
3
230
Mobile First: as difficult as doing things right
swwweet
222
8.8k
Unsuck your backbone
ammeep
668
57k
Why You Should Never Use an ORM
jnunemaker
PRO
53
9k
A Modern Web Designer's Workflow
chriscoyier
692
190k
Automating Front-end Workflow
addyosmani
1365
200k
Facilitating Awesome Meetings
lara
49
6k
Transcript
AWS Ͱ࢝ΊΔ DeepLearning re:Invent 2016 Machine Learning Mini Con ࢀՃใࠂ
JAWS-UG AI ࢧ෦ @ 2016.12.09
@pottava SUPINF Inc.
͍͖ͳΓͰ͕͢
FizzBuzz ͍ͬͯΔਓʙʁ
FizzBuzz ॻ͚Δਓʙʁ
ɹfor i in range(1,101): ɹ if i % 15 ==
0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ɹͰ͢Ͷɺྫ͑ɻ
Ͱ
ػցֶशͰ FizzBuzz ղ͚Δਓʙʁ
ʁʁʁ
ίϯϐϡʔλʹσʔλΛͯ͠ ύλʔϯΛݟ͚ͭͤ͞Δ
Ξϓϩʔν Ͳ͏ղ͔͘ ໋ྩత ɹfor i in range(1,101): ɹ if i
% 15 == 0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ػցֶश େྔͷσʔλΛ͠... ༧ଌਫ਼ΛߴΊΔ... parameter result 6 Fizz 7 7 10 Buzz 30 FizzBuzz …
Ҏ্ɺͱ͋ΔϫʔΫγϣοϓͰͷ ΞΠεϒϨΠΫͰͨ͠ɻ
ຊ
AWS Ͱ࢝ΊΔ DeepLearning
ࠓͷ ɾ࠷ۙ͋ͬͨ Amazon ػցֶशܥχϡʔεͱ DL ɾre:Invent Machine Learning Mini Con
ใࠂ ɾMXNet ʹ͍ͭͯ ɾϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
Amazon ػցֶशܥχϡʔε
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Echo ɾAmazonʮୈ࢛ͷऩӹͷபʯ 2020 ·Ͱʹ 110 ԯυϧՔ͙ ɹਓೳΞγελϯτʮAlexaʯͱ ɹԻίϯτϩʔϥʔͷʮEchoʯ ɹhttp://thebridge.jp/2016/09/amazon-echo-alexa-add-11-billion-in-revenue-by-2020-2016-9-pickupnews
ɾhttps://www.amazon.jobs/en/teams/alexa ɾre:Invent Ͱ echo dot ͕ࢀՃऀʹΒΕ·ͨ͠
Amazon Echo
Amazon Echo Alexa ʹԻͰ͓ئ͍ɾ࣭͢ΔͨΊͷσόΠεɻ ʢAlexa Amazon ͕։ൃͨ͠ AI ʣ
ʮΞϨΫαɺUber ΛݺΜͰɻࠓͷఱؾʁ ʯ ʮΞϨΫαɺ͜ͷۂͷԋऀ୭ʁԻྔΛ্͛ͯʯ
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢ Amazon Lex
Amazon Polly
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Go
Amazon Go 1. ೖళ࣌ɺήʔτʹεϚϗΞϓϦΛ͔͟͢ 2. ΄͍͠ͷΛόοάʹೖΕΔ 3. ͓ళΛग़Δ Coming early
2017 !! 2131 7th Ave Seattle, Washington
Amazon Rekognition ଞࣾͰΜͳ Computer vision API ͷҰछɻ
Amazon Rekognition ਂֶशϕʔεͷը૾ೝࣝ APIɻ ɾҰൠମ / ܠݕग़ ɾදੳ ɾإͷྨࣅఆ
Amazon Rekognition ͬͯΈͨ
Amazon Rekognition ฐࣾ༐ऀͷ ྨࣅఆɻ
re:Invent Machine Learning Mini Con
Machine Learning Mini Con ɾػցֶशܥͷηογϣϯ / ϫʔΫγϣοϓ ɾhttp://bit.ly/reinvent-2016-ml ɾࠓ 17
ηογϣϯ ɾϫʔΫγϣοϓҎ֎ YouTube ͰݟΕ·͢
ೖฤ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC202: Alexa ʹ͓͚Δਂֶश ɾMAC203:
Amazon Rekognition ͷ͝հ ɾMAC204: Amazon Polly ͷ͝հ ɾMAC205: ΫϥυΒ͘͠εέʔϧ͢Δਂֶश: ɹɹɹɹɹ AWS Ͱ Caffe ΛεέʔϧΞοϓͯ͠ϏσΦݕࡧΛվળ͢Δ ɾMAC206: ػցֶशͷݱঢ়
தڃฤ ɾMAC301: ਂֶशͰͷϓϩηεΛม͍͑ͯ͘ ɾMAC302: ෆಈ࢈Ͱͷઓུత༏ҐͷͨΊʹ Amazon ML, Redshift, S3 σʔλϨΠΫΛ׆༻͢Δ
ɾMAC303: Amazon EMR ͱ Apache Spark ͰΫϥεྨͱ ϨίϝϯσʔγϣϯΤϯδϯΛ։ൃ͢Δ ɾMAC304: Amazon Lex ͷ͝հ ɾMAC306: MXNet ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC306-R: MXNet Λͬͨਂֶश
தڃฤ ɾMAC307: Predicting Customer Churn with Amazon ML ɾMAC308: ϫʔΫγϣοϓ:
Amazon Lex, Amazon Polly ͦͯ͠ Amazon Rekognition ΛͬͨϋϯζΦϯ ɾMAC309: Amazon Polly ͱ Amazon Lex ͷ͝հ
্ڃฤ ɾMAC401: Scalable Deep Learning Using MXNet ɾMAC403: Automatic Grading
of Diabetic Retinopathy ɹɹɹɹɹ through Deep Learning
ৄࡉ YouTube ͱ Slideshare Ͱ
ϐοΫΞοϓ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC206: ػցֶशͷݱঢ় ɾMAC306: MXNet
ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC401: Scalable Deep Learning Using MXNet
MAC201 Mechanical Turk Ͱػցֶश༻σʔλΛ࡞Δ ɾhttps://www.youtube.com/watch?v=vRtLdeNl7Tg ɾେྔͷɺߴ࣭ͳσʔληοτूΊʹ͍͘ ɾϝΧχΧϧλʔΫʹͦͷ࡞Λґཔ͢Δ
MAC206 Amazon ۀ͔Β࠷৽ AI αʔϏε·Ͱհ ɾhttps://www.youtube.com/watch?v=HqsUfyu0XJc ɾDeep Learning AMI, MXNet,
Alexa ͳͲͳͲ.. ɾޙܯʹαʔϏεఏڙ͢ΔϞτϩʔϥͷࣄྫ
MXNet
ֶशϑϨʔϜϫʔΫ ͲΕ͕͓ΈͰ͔͢ɾɾʁ MXNet / TensorFlow / Caffe / Chainerɻ ɾͲͷχϡʔϥϧωοτ͏ͷʁCNNʁRNNʁ
ɾGPU ͏ͷʁCPU ͚ͩʁෳϊʔυ͏ʁ ɾࠃ࢈ΛԠԉʁ
AWS MXNet Ұײ͋Δ ɾ͑ɺAmazon DSSTNE ɾɾ ɾͱ͍͑ଞͷݕ౼͍ͨ͠ํͪ͜Β ɹ CMP314:
Bringing Deep Learning to the Cloud with Amazon EC2 https://www.youtube.com/watch?v=34Xorby_pyw
MAC306 Netflix ͷϨίϝϯυྫΛ௨ͯ͡ DL / MXNet Λৄઆ ɾhttps://www.youtube.com/watch?v=cftJAuwKWkA ɾDeep Learning
ͷॳา͔Βɻͱ͔ͯΓ͍͢ ɾGitHub ͷ MXNet ϦϙδτϦʹ͋ΔαϯϓϧΛσϞ https://github.com/dmlc/mxnet/tree/master/example/recommenders
ϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
ϫʔΫγϣοϓʁ ϋϯζΦϯܗ͕ࣜଟ͍ɻάϧʔϓϫʔΫ͋ͬͨΓɻ ɾ࣮ࡍʹखΛಈ͔͢ͷͰͱͯཧղ͕ਐΉ ɾ·ΘΓͷࢀՃऀͱͷίϛϡχέʔγϣϯ .. !! ɾre:Invent ʹߦ͘ͳΒ௨ৗηογϣϯΑΓΦεεϝ
MAC401 ECS ্Ͱ MXNet ʹΑΔ DL ͷֶशɾਪΛମݧ ɾECS ͷ Runtask
+ CPU ͷΈ ɾGitHub ͷ awslabs ϦϙδτϦΛར༻ https://github.com/awslabs/ecs-deep-learning-workshop/
ࢼ͢ͷͱͯ؆୯ CloudFormation ʹΑΔ EC2 / ECS ੜɻͦͷޙ.. ɾLab 3: ECS
Ͱ MXNet ͷ Jupyter notebook ىಈ ɾLab 4: MXNet ʹΑΔը૾ͷΫϥεྨ ɾLab 5: ECS λεΫͱͯ͠ը૾ΛΫϥεྨ
Deep Learning AMI http://qiita.com/pottava/items/c79117089be2406b127f
͓Βͤ
དྷि JAWS-UG ίϯςφࢧ෦
ECS Λத৺ʹɺίϯςφ·ΘΓͷ࠷৽ใΛ͓ಧ͚ʂ http://jawsug-container.connpass.com/
Amazon ECS ɾࠓ ECS ͰδϣϒΛΒͤΔηογϣϯ͕ෳ ɾMXNet on ECS ͷϫʔΫγϣοϓੈքͰਓؾ ɾECS
Ϋϥελ্Ͱ MXNet ͷֶशɾਪ
AWS Batch ɾECS ্ʹ HPC ۀքͷҙຯʹ͍ۙΫϥελΛߏஙɻ ɾδϣϒεέδϡʔϥ ≠ ίϯςφք۾ͷεέδϡʔϥ ɾECS
্ͳͷͰɺ࣮ίϯςφϕʔε ɾGlue EFS ͱͷΈ߹Θͤॏཁ
͓ΘΓ
גࣜձࣾεϐϯϑ ΞΠσΟΞΛ͔ͨͪʹʂ +
http://prtimes.jp/main/html/rd/p/000000007.000007768.html Comfy for Docker ϓϩδΣΫτͷ Docker ಋೖɾ։ൃࢧԉɾӡ༻ࢹߦΛ͍ͨ͠·͢ɻ ʢGCP / Azure
ͪΖΜରԠ͍ͯ͠·͢ɾɾʣ https://www.supinf.co.jp/service/dockersupport/
͝૬ஊ͓ؾܰʹͪ͜Β·Ͱ.. 57 <Thank you !! https://www.supinf.co.jp/service/dockersupport/