Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
reinvent-ml-mini-con
Search
ryo nakamaru
December 09, 2016
Technology
0
2.9k
reinvent-ml-mini-con
JAWS-UG AI 支部 #2 での登壇資料です
ryo nakamaru
December 09, 2016
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.5k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
210
Firecracker とは何か/what is Firecracker
pottava
12
5.4k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
430
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.2k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.3k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
490
Other Decks in Technology
See All in Technology
LinkX_GitHubを基点にした_AI時代のプロジェクトマネジメント.pdf
iotcomjpadmin
0
170
Абьюзим random_bytes(). Фёдор Кулаков, разработчик Lamoda Tech
lamodatech
0
330
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
160
AIのAIによるAIのための出力評価と改善
chocoyama
2
540
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
390
あなたの声を届けよう! 女性エンジニア登壇の意義とアウトプット実践ガイド #wttjp / Call for Your Voice
kondoyuko
4
380
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
120
AIエージェント最前線! Amazon Bedrock、Amazon Q、そしてMCPを使いこなそう
minorun365
PRO
13
4.8k
“社内”だけで完結していた私が、AWS Community Builder になるまで
nagisa53
1
340
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
200
GitHub Copilot の概要
tomokusaba
1
130
本当に使える?AutoUpgrade の新機能を実践検証してみた
oracle4engineer
PRO
1
140
Featured
See All Featured
Music & Morning Musume
bryan
46
6.6k
Statistics for Hackers
jakevdp
799
220k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Code Reviewing Like a Champion
maltzj
524
40k
We Have a Design System, Now What?
morganepeng
53
7.7k
Code Review Best Practice
trishagee
68
18k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Building Adaptive Systems
keathley
43
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
AWS Ͱ࢝ΊΔ DeepLearning re:Invent 2016 Machine Learning Mini Con ࢀՃใࠂ
JAWS-UG AI ࢧ෦ @ 2016.12.09
@pottava SUPINF Inc.
͍͖ͳΓͰ͕͢
FizzBuzz ͍ͬͯΔਓʙʁ
FizzBuzz ॻ͚Δਓʙʁ
ɹfor i in range(1,101): ɹ if i % 15 ==
0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ɹͰ͢Ͷɺྫ͑ɻ
Ͱ
ػցֶशͰ FizzBuzz ղ͚Δਓʙʁ
ʁʁʁ
ίϯϐϡʔλʹσʔλΛͯ͠ ύλʔϯΛݟ͚ͭͤ͞Δ
Ξϓϩʔν Ͳ͏ղ͔͘ ໋ྩత ɹfor i in range(1,101): ɹ if i
% 15 == 0: ɹ print 'FizzBuzz' ɹ elif i % 3 == 0: ɹ print 'Fizz' ɹ elif i % 5 == 0: ɹ print 'Buzz' ɹ else: ɹ print i ػցֶश େྔͷσʔλΛ͠... ༧ଌਫ਼ΛߴΊΔ... parameter result 6 Fizz 7 7 10 Buzz 30 FizzBuzz …
Ҏ্ɺͱ͋ΔϫʔΫγϣοϓͰͷ ΞΠεϒϨΠΫͰͨ͠ɻ
ຊ
AWS Ͱ࢝ΊΔ DeepLearning
ࠓͷ ɾ࠷ۙ͋ͬͨ Amazon ػցֶशܥχϡʔεͱ DL ɾre:Invent Machine Learning Mini Con
ใࠂ ɾMXNet ʹ͍ͭͯ ɾϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
Amazon ػցֶशܥχϡʔε
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Echo ɾAmazonʮୈ࢛ͷऩӹͷபʯ 2020 ·Ͱʹ 110 ԯυϧՔ͙ ɹਓೳΞγελϯτʮAlexaʯͱ ɹԻίϯτϩʔϥʔͷʮEchoʯ ɹhttp://thebridge.jp/2016/09/amazon-echo-alexa-add-11-billion-in-revenue-by-2020-2016-9-pickupnews
ɾhttps://www.amazon.jobs/en/teams/alexa ɾre:Invent Ͱ echo dot ͕ࢀՃऀʹΒΕ·ͨ͠
Amazon Echo
Amazon Echo Alexa ʹԻͰ͓ئ͍ɾ࣭͢ΔͨΊͷσόΠεɻ ʢAlexa Amazon ͕։ൃͨ͠ AI ʣ
ʮΞϨΫαɺUber ΛݺΜͰɻࠓͷఱؾʁ ʯ ʮΞϨΫαɺ͜ͷۂͷԋऀ୭ʁԻྔΛ্͛ͯʯ
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢
Amazon Echo 1. ԻΛฉ͖औΓ 2. ԿΒ͔ͷॲཧΛͯ͠ 3. ԻΛฦ͢ Amazon Lex
Amazon Polly
ɾAmazon Echo ɾAmazon Go AI ΧϯύχʔɺAmazon.com
Amazon Go
Amazon Go 1. ೖళ࣌ɺήʔτʹεϚϗΞϓϦΛ͔͟͢ 2. ΄͍͠ͷΛόοάʹೖΕΔ 3. ͓ళΛग़Δ Coming early
2017 !! 2131 7th Ave Seattle, Washington
Amazon Rekognition ଞࣾͰΜͳ Computer vision API ͷҰछɻ
Amazon Rekognition ਂֶशϕʔεͷը૾ೝࣝ APIɻ ɾҰൠମ / ܠݕग़ ɾදੳ ɾإͷྨࣅఆ
Amazon Rekognition ͬͯΈͨ
Amazon Rekognition ฐࣾ༐ऀͷ ྨࣅఆɻ
re:Invent Machine Learning Mini Con
Machine Learning Mini Con ɾػցֶशܥͷηογϣϯ / ϫʔΫγϣοϓ ɾhttp://bit.ly/reinvent-2016-ml ɾࠓ 17
ηογϣϯ ɾϫʔΫγϣοϓҎ֎ YouTube ͰݟΕ·͢
ೖฤ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC202: Alexa ʹ͓͚Δਂֶश ɾMAC203:
Amazon Rekognition ͷ͝հ ɾMAC204: Amazon Polly ͷ͝հ ɾMAC205: ΫϥυΒ͘͠εέʔϧ͢Δਂֶश: ɹɹɹɹɹ AWS Ͱ Caffe ΛεέʔϧΞοϓͯ͠ϏσΦݕࡧΛվળ͢Δ ɾMAC206: ػցֶशͷݱঢ়
தڃฤ ɾMAC301: ਂֶशͰͷϓϩηεΛม͍͑ͯ͘ ɾMAC302: ෆಈ࢈Ͱͷઓུత༏ҐͷͨΊʹ Amazon ML, Redshift, S3 σʔλϨΠΫΛ׆༻͢Δ
ɾMAC303: Amazon EMR ͱ Apache Spark ͰΫϥεྨͱ ϨίϝϯσʔγϣϯΤϯδϯΛ։ൃ͢Δ ɾMAC304: Amazon Lex ͷ͝հ ɾMAC306: MXNet ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC306-R: MXNet Λͬͨਂֶश
தڃฤ ɾMAC307: Predicting Customer Churn with Amazon ML ɾMAC308: ϫʔΫγϣοϓ:
Amazon Lex, Amazon Polly ͦͯ͠ Amazon Rekognition ΛͬͨϋϯζΦϯ ɾMAC309: Amazon Polly ͱ Amazon Lex ͷ͝հ
্ڃฤ ɾMAC401: Scalable Deep Learning Using MXNet ɾMAC403: Automatic Grading
of Diabetic Retinopathy ɹɹɹɹɹ through Deep Learning
ৄࡉ YouTube ͱ Slideshare Ͱ
ϐοΫΞοϓ ɾMAC201: Amazon Mechanical Turk ΛͬͯҰൠతಛΛ͔ͭΉ ɾMAC206: ػցֶशͷݱঢ় ɾMAC306: MXNet
ΛͬͯϨίϝϯσʔγϣϯϞσϧΛߏங͢Δ ɾMAC401: Scalable Deep Learning Using MXNet
MAC201 Mechanical Turk Ͱػցֶश༻σʔλΛ࡞Δ ɾhttps://www.youtube.com/watch?v=vRtLdeNl7Tg ɾେྔͷɺߴ࣭ͳσʔληοτूΊʹ͍͘ ɾϝΧχΧϧλʔΫʹͦͷ࡞Λґཔ͢Δ
MAC206 Amazon ۀ͔Β࠷৽ AI αʔϏε·Ͱհ ɾhttps://www.youtube.com/watch?v=HqsUfyu0XJc ɾDeep Learning AMI, MXNet,
Alexa ͳͲͳͲ.. ɾޙܯʹαʔϏεఏڙ͢ΔϞτϩʔϥͷࣄྫ
MXNet
ֶशϑϨʔϜϫʔΫ ͲΕ͕͓ΈͰ͔͢ɾɾʁ MXNet / TensorFlow / Caffe / Chainerɻ ɾͲͷχϡʔϥϧωοτ͏ͷʁCNNʁRNNʁ
ɾGPU ͏ͷʁCPU ͚ͩʁෳϊʔυ͏ʁ ɾࠃ࢈ΛԠԉʁ
AWS MXNet Ұײ͋Δ ɾ͑ɺAmazon DSSTNE ɾɾ ɾͱ͍͑ଞͷݕ౼͍ͨ͠ํͪ͜Β ɹ CMP314:
Bringing Deep Learning to the Cloud with Amazon EC2 https://www.youtube.com/watch?v=34Xorby_pyw
MAC306 Netflix ͷϨίϝϯυྫΛ௨ͯ͡ DL / MXNet Λৄઆ ɾhttps://www.youtube.com/watch?v=cftJAuwKWkA ɾDeep Learning
ͷॳา͔Βɻͱ͔ͯΓ͍͢ ɾGitHub ͷ MXNet ϦϙδτϦʹ͋ΔαϯϓϧΛσϞ https://github.com/dmlc/mxnet/tree/master/example/recommenders
ϫʔΫγϣοϓͷ༷ࢠͱ࣮ྫ
ϫʔΫγϣοϓʁ ϋϯζΦϯܗ͕ࣜଟ͍ɻάϧʔϓϫʔΫ͋ͬͨΓɻ ɾ࣮ࡍʹखΛಈ͔͢ͷͰͱͯཧղ͕ਐΉ ɾ·ΘΓͷࢀՃऀͱͷίϛϡχέʔγϣϯ .. !! ɾre:Invent ʹߦ͘ͳΒ௨ৗηογϣϯΑΓΦεεϝ
MAC401 ECS ্Ͱ MXNet ʹΑΔ DL ͷֶशɾਪΛମݧ ɾECS ͷ Runtask
+ CPU ͷΈ ɾGitHub ͷ awslabs ϦϙδτϦΛར༻ https://github.com/awslabs/ecs-deep-learning-workshop/
ࢼ͢ͷͱͯ؆୯ CloudFormation ʹΑΔ EC2 / ECS ੜɻͦͷޙ.. ɾLab 3: ECS
Ͱ MXNet ͷ Jupyter notebook ىಈ ɾLab 4: MXNet ʹΑΔը૾ͷΫϥεྨ ɾLab 5: ECS λεΫͱͯ͠ը૾ΛΫϥεྨ
Deep Learning AMI http://qiita.com/pottava/items/c79117089be2406b127f
͓Βͤ
དྷि JAWS-UG ίϯςφࢧ෦
ECS Λத৺ʹɺίϯςφ·ΘΓͷ࠷৽ใΛ͓ಧ͚ʂ http://jawsug-container.connpass.com/
Amazon ECS ɾࠓ ECS ͰδϣϒΛΒͤΔηογϣϯ͕ෳ ɾMXNet on ECS ͷϫʔΫγϣοϓੈքͰਓؾ ɾECS
Ϋϥελ্Ͱ MXNet ͷֶशɾਪ
AWS Batch ɾECS ্ʹ HPC ۀքͷҙຯʹ͍ۙΫϥελΛߏஙɻ ɾδϣϒεέδϡʔϥ ≠ ίϯςφք۾ͷεέδϡʔϥ ɾECS
্ͳͷͰɺ࣮ίϯςφϕʔε ɾGlue EFS ͱͷΈ߹Θͤॏཁ
͓ΘΓ
גࣜձࣾεϐϯϑ ΞΠσΟΞΛ͔ͨͪʹʂ +
http://prtimes.jp/main/html/rd/p/000000007.000007768.html Comfy for Docker ϓϩδΣΫτͷ Docker ಋೖɾ։ൃࢧԉɾӡ༻ࢹߦΛ͍ͨ͠·͢ɻ ʢGCP / Azure
ͪΖΜରԠ͍ͯ͠·͢ɾɾʣ https://www.supinf.co.jp/service/dockersupport/
͝૬ஊ͓ؾܰʹͪ͜Β·Ͱ.. 57 <Thank you !! https://www.supinf.co.jp/service/dockersupport/