Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
Search
Qiushi Pan
June 12, 2019
Research
1
410
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
システム主専攻 着手発表スライド。
Auto-encoderによるsemi-supervised learningの実現と、supervised learningとの比較による中間表現の分析を行う
Qiushi Pan
June 12, 2019
Tweet
Share
More Decks by Qiushi Pan
See All by Qiushi Pan
応答例を見ながらの キャラ性格チューニング
qqpann
0
120
[ICCE2021] Prior Knowledge on the Dynamics of Skill Acquisition Improves Deep Knowledge Tracing
qqpann
1
75
卒業研究最終発表
qqpann
1
69
[卒論中間発表] Encoder-Decoder DKTと中間表現の分析
qqpann
0
81
Reduceを使った定理証明 〜 グレブナー基底を添えて 〜
qqpann
0
160
Other Decks in Research
See All in Research
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
520
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
350
NLP Colloquium
junokim
1
200
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
410
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.4k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
490
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
160
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1k
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Statistics for Hackers
jakevdp
799
220k
Rails Girls Zürich Keynote
gr2m
95
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Balancing Empowerment & Direction
lara
3
610
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Cult of Friendly URLs
andyhume
79
6.6k
Transcript
システム主専攻 着手発表 深層学習における中間表現の分析 潘 秋実 1
Autoencoder Autoencoderとは 教師なし学習の一種。 データの特徴を獲得するためのネットワーク Encoder: Xが得られた状態で、Xを生み出したZを推論 Decoder: 潜在変数Zから高次元データXを生成 Zを中間表現と呼ぶこととする 2
Semi‑supervised learning with Autoencoder Autoencoderによる教師なし学習で獲得したZを、Yを予測する教師あり 学習に利用 Zによって効率が改善する場合があると考えられる 課題意識 → Zを教師ありで行う既存タスクで、Zを教師なしで学習しても精度を出
せないか 3
画像の転移学習におけるAutoencoder 図:中間表現を可視化したもの[1] 画像の輪郭の特徴を抽出 転移学習で学習を効率化 4
SequenceデータにおけるAutoencoder Semantic Parsing with Semi‑Supervised Sequential Autoencoders[2] Logical formsを半教師あり学習で行う研究 xの正解ラベルがないデータではyの教師なし学習
xの正解ラベルがあるデータでは追加でxを学習 5
関連研究: Speech synthesis from neural decoding of spoken sentences (1)
脳の活動から発話をデコードするタスク[3][4] 6
関連研究: Speech synthesis from neural decoding of spoken sentences (2)
RNN+RNNを構成して、一度口の筋肉の動きを予測することで、発話予 測を改善した 7
研究計画 Speech synthesis from neural decoding of spoken sentences の追実験
著者に問い合わせを行い、データを入手できたら再現実験を試みる 筋肉の動きの正解データを用いずに、発話を予測できるようになら ないか 中間表現を使う場合とそうでない場合を比較して効果の分析 画像または自然言語処理などのタスクのサーベイ このタスクに限らず、「中間表現」を経て精度が向上するタスクは あるはず。中間表現の正解ラベルがなくても同等の効果を得られた ら意義があるのではないか 一般的に中間表現を教師なしで代替できないか 8
参考文献 [1] Computer Science Department, Stanford University. "Autoencoders". UFLDL Tutorial.
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/, (Accessed 2019‑06‑11). [2] Tomas Kocisky et al. "Semantic Parsing with Semi‑Supervised Sequential Autoencoders". CoRR. 2016. (Accessed 2019‑06‑11) [3] Anumanchipalli et al. "Speech synthesis from neural decoding of spoken sentences". Nature. 2019. https://www.nature.com/articles/s41586‑019‑1119‑1, (Accessed 2019‑06‑11). [4] Pandarinath, Ali. "Brain implants that let you speak your mind". Nature news & views. https://www.nature.com/articles/d41586‑019‑ 01181‑y, (Accessed 2019‑06‑11). 9