Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
Search
Qiushi Pan
June 12, 2019
Research
1
440
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
システム主専攻 着手発表スライド。
Auto-encoderによるsemi-supervised learningの実現と、supervised learningとの比較による中間表現の分析を行う
Qiushi Pan
June 12, 2019
Tweet
Share
More Decks by Qiushi Pan
See All by Qiushi Pan
応答例を見ながらの キャラ性格チューニング
qqpann
0
130
[ICCE2021] Prior Knowledge on the Dynamics of Skill Acquisition Improves Deep Knowledge Tracing
qqpann
1
80
卒業研究最終発表
qqpann
1
76
[卒論中間発表] Encoder-Decoder DKTと中間表現の分析
qqpann
0
90
Reduceを使った定理証明 〜 グレブナー基底を添えて 〜
qqpann
0
160
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
940
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
890
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
120
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
680
Language Models Are Implicitly Continuous
eumesy
PRO
0
340
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
320
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
670
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
120
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
GitHub's CSS Performance
jonrohan
1032
470k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
What's in a price? How to price your products and services
michaelherold
246
12k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Language of Interfaces
destraynor
162
25k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
システム主専攻 着手発表 深層学習における中間表現の分析 潘 秋実 1
Autoencoder Autoencoderとは 教師なし学習の一種。 データの特徴を獲得するためのネットワーク Encoder: Xが得られた状態で、Xを生み出したZを推論 Decoder: 潜在変数Zから高次元データXを生成 Zを中間表現と呼ぶこととする 2
Semi‑supervised learning with Autoencoder Autoencoderによる教師なし学習で獲得したZを、Yを予測する教師あり 学習に利用 Zによって効率が改善する場合があると考えられる 課題意識 → Zを教師ありで行う既存タスクで、Zを教師なしで学習しても精度を出
せないか 3
画像の転移学習におけるAutoencoder 図:中間表現を可視化したもの[1] 画像の輪郭の特徴を抽出 転移学習で学習を効率化 4
SequenceデータにおけるAutoencoder Semantic Parsing with Semi‑Supervised Sequential Autoencoders[2] Logical formsを半教師あり学習で行う研究 xの正解ラベルがないデータではyの教師なし学習
xの正解ラベルがあるデータでは追加でxを学習 5
関連研究: Speech synthesis from neural decoding of spoken sentences (1)
脳の活動から発話をデコードするタスク[3][4] 6
関連研究: Speech synthesis from neural decoding of spoken sentences (2)
RNN+RNNを構成して、一度口の筋肉の動きを予測することで、発話予 測を改善した 7
研究計画 Speech synthesis from neural decoding of spoken sentences の追実験
著者に問い合わせを行い、データを入手できたら再現実験を試みる 筋肉の動きの正解データを用いずに、発話を予測できるようになら ないか 中間表現を使う場合とそうでない場合を比較して効果の分析 画像または自然言語処理などのタスクのサーベイ このタスクに限らず、「中間表現」を経て精度が向上するタスクは あるはず。中間表現の正解ラベルがなくても同等の効果を得られた ら意義があるのではないか 一般的に中間表現を教師なしで代替できないか 8
参考文献 [1] Computer Science Department, Stanford University. "Autoencoders". UFLDL Tutorial.
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/, (Accessed 2019‑06‑11). [2] Tomas Kocisky et al. "Semantic Parsing with Semi‑Supervised Sequential Autoencoders". CoRR. 2016. (Accessed 2019‑06‑11) [3] Anumanchipalli et al. "Speech synthesis from neural decoding of spoken sentences". Nature. 2019. https://www.nature.com/articles/s41586‑019‑1119‑1, (Accessed 2019‑06‑11). [4] Pandarinath, Ali. "Brain implants that let you speak your mind". Nature news & views. https://www.nature.com/articles/d41586‑019‑ 01181‑y, (Accessed 2019‑06‑11). 9