Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
Search
Qiushi Pan
June 12, 2019
Research
1
410
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
システム主専攻 着手発表スライド。
Auto-encoderによるsemi-supervised learningの実現と、supervised learningとの比較による中間表現の分析を行う
Qiushi Pan
June 12, 2019
Tweet
Share
More Decks by Qiushi Pan
See All by Qiushi Pan
応答例を見ながらの キャラ性格チューニング
qqpann
0
120
[ICCE2021] Prior Knowledge on the Dynamics of Skill Acquisition Improves Deep Knowledge Tracing
qqpann
1
75
卒業研究最終発表
qqpann
1
69
[卒論中間発表] Encoder-Decoder DKTと中間表現の分析
qqpann
0
81
Reduceを使った定理証明 〜 グレブナー基底を添えて 〜
qqpann
0
160
Other Decks in Research
See All in Research
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
240
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
数理最適化と機械学習の融合
mickey_kubo
15
9.1k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
390
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
420
20250502_ABEJA_論文読み会_スライド
flatton
0
190
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
270
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.1k
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.5k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
240
Featured
See All Featured
Fireside Chat
paigeccino
38
3.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
How STYLIGHT went responsive
nonsquared
100
5.7k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Designing for Performance
lara
610
69k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Transcript
システム主専攻 着手発表 深層学習における中間表現の分析 潘 秋実 1
Autoencoder Autoencoderとは 教師なし学習の一種。 データの特徴を獲得するためのネットワーク Encoder: Xが得られた状態で、Xを生み出したZを推論 Decoder: 潜在変数Zから高次元データXを生成 Zを中間表現と呼ぶこととする 2
Semi‑supervised learning with Autoencoder Autoencoderによる教師なし学習で獲得したZを、Yを予測する教師あり 学習に利用 Zによって効率が改善する場合があると考えられる 課題意識 → Zを教師ありで行う既存タスクで、Zを教師なしで学習しても精度を出
せないか 3
画像の転移学習におけるAutoencoder 図:中間表現を可視化したもの[1] 画像の輪郭の特徴を抽出 転移学習で学習を効率化 4
SequenceデータにおけるAutoencoder Semantic Parsing with Semi‑Supervised Sequential Autoencoders[2] Logical formsを半教師あり学習で行う研究 xの正解ラベルがないデータではyの教師なし学習
xの正解ラベルがあるデータでは追加でxを学習 5
関連研究: Speech synthesis from neural decoding of spoken sentences (1)
脳の活動から発話をデコードするタスク[3][4] 6
関連研究: Speech synthesis from neural decoding of spoken sentences (2)
RNN+RNNを構成して、一度口の筋肉の動きを予測することで、発話予 測を改善した 7
研究計画 Speech synthesis from neural decoding of spoken sentences の追実験
著者に問い合わせを行い、データを入手できたら再現実験を試みる 筋肉の動きの正解データを用いずに、発話を予測できるようになら ないか 中間表現を使う場合とそうでない場合を比較して効果の分析 画像または自然言語処理などのタスクのサーベイ このタスクに限らず、「中間表現」を経て精度が向上するタスクは あるはず。中間表現の正解ラベルがなくても同等の効果を得られた ら意義があるのではないか 一般的に中間表現を教師なしで代替できないか 8
参考文献 [1] Computer Science Department, Stanford University. "Autoencoders". UFLDL Tutorial.
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/, (Accessed 2019‑06‑11). [2] Tomas Kocisky et al. "Semantic Parsing with Semi‑Supervised Sequential Autoencoders". CoRR. 2016. (Accessed 2019‑06‑11) [3] Anumanchipalli et al. "Speech synthesis from neural decoding of spoken sentences". Nature. 2019. https://www.nature.com/articles/s41586‑019‑1119‑1, (Accessed 2019‑06‑11). [4] Pandarinath, Ali. "Brain implants that let you speak your mind". Nature news & views. https://www.nature.com/articles/d41586‑019‑ 01181‑y, (Accessed 2019‑06‑11). 9