Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
Search
Qiushi Pan
June 12, 2019
Research
1
420
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
システム主専攻 着手発表スライド。
Auto-encoderによるsemi-supervised learningの実現と、supervised learningとの比較による中間表現の分析を行う
Qiushi Pan
June 12, 2019
Tweet
Share
More Decks by Qiushi Pan
See All by Qiushi Pan
応答例を見ながらの キャラ性格チューニング
qqpann
0
120
[ICCE2021] Prior Knowledge on the Dynamics of Skill Acquisition Improves Deep Knowledge Tracing
qqpann
1
76
卒業研究最終発表
qqpann
1
69
[卒論中間発表] Encoder-Decoder DKTと中間表現の分析
qqpann
0
85
Reduceを使った定理証明 〜 グレブナー基底を添えて 〜
qqpann
0
160
Other Decks in Research
See All in Research
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
360
能動適応的実験計画
masakat0
2
830
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
340
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
640
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1.1k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
190
20250624_熊本経済同友会6月例会講演
trafficbrain
1
660
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.3k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
630
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
17
10k
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Code Review Best Practice
trishagee
72
19k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Faster Mobile Websites
deanohume
310
31k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Why Our Code Smells
bkeepers
PRO
339
57k
How STYLIGHT went responsive
nonsquared
100
5.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
システム主専攻 着手発表 深層学習における中間表現の分析 潘 秋実 1
Autoencoder Autoencoderとは 教師なし学習の一種。 データの特徴を獲得するためのネットワーク Encoder: Xが得られた状態で、Xを生み出したZを推論 Decoder: 潜在変数Zから高次元データXを生成 Zを中間表現と呼ぶこととする 2
Semi‑supervised learning with Autoencoder Autoencoderによる教師なし学習で獲得したZを、Yを予測する教師あり 学習に利用 Zによって効率が改善する場合があると考えられる 課題意識 → Zを教師ありで行う既存タスクで、Zを教師なしで学習しても精度を出
せないか 3
画像の転移学習におけるAutoencoder 図:中間表現を可視化したもの[1] 画像の輪郭の特徴を抽出 転移学習で学習を効率化 4
SequenceデータにおけるAutoencoder Semantic Parsing with Semi‑Supervised Sequential Autoencoders[2] Logical formsを半教師あり学習で行う研究 xの正解ラベルがないデータではyの教師なし学習
xの正解ラベルがあるデータでは追加でxを学習 5
関連研究: Speech synthesis from neural decoding of spoken sentences (1)
脳の活動から発話をデコードするタスク[3][4] 6
関連研究: Speech synthesis from neural decoding of spoken sentences (2)
RNN+RNNを構成して、一度口の筋肉の動きを予測することで、発話予 測を改善した 7
研究計画 Speech synthesis from neural decoding of spoken sentences の追実験
著者に問い合わせを行い、データを入手できたら再現実験を試みる 筋肉の動きの正解データを用いずに、発話を予測できるようになら ないか 中間表現を使う場合とそうでない場合を比較して効果の分析 画像または自然言語処理などのタスクのサーベイ このタスクに限らず、「中間表現」を経て精度が向上するタスクは あるはず。中間表現の正解ラベルがなくても同等の効果を得られた ら意義があるのではないか 一般的に中間表現を教師なしで代替できないか 8
参考文献 [1] Computer Science Department, Stanford University. "Autoencoders". UFLDL Tutorial.
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/, (Accessed 2019‑06‑11). [2] Tomas Kocisky et al. "Semantic Parsing with Semi‑Supervised Sequential Autoencoders". CoRR. 2016. (Accessed 2019‑06‑11) [3] Anumanchipalli et al. "Speech synthesis from neural decoding of spoken sentences". Nature. 2019. https://www.nature.com/articles/s41586‑019‑1119‑1, (Accessed 2019‑06‑11). [4] Pandarinath, Ali. "Brain implants that let you speak your mind". Nature news & views. https://www.nature.com/articles/d41586‑019‑ 01181‑y, (Accessed 2019‑06‑11). 9