Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
Search
Qiushi Pan
June 12, 2019
Research
1
440
[卒論着手発表] Autoencoderによる半教師あり学習と中間表現の分析
システム主専攻 着手発表スライド。
Auto-encoderによるsemi-supervised learningの実現と、supervised learningとの比較による中間表現の分析を行う
Qiushi Pan
June 12, 2019
Tweet
Share
More Decks by Qiushi Pan
See All by Qiushi Pan
応答例を見ながらの キャラ性格チューニング
qqpann
0
130
[ICCE2021] Prior Knowledge on the Dynamics of Skill Acquisition Improves Deep Knowledge Tracing
qqpann
1
82
卒業研究最終発表
qqpann
1
77
[卒論中間発表] Encoder-Decoder DKTと中間表現の分析
qqpann
0
91
Reduceを使った定理証明 〜 グレブナー基底を添えて 〜
qqpann
0
170
Other Decks in Research
See All in Research
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
470
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
財務諸表監査のための逐次検定
masakat0
0
210
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
350
Remote sensing × Multi-modal meta survey
satai
4
650
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
290
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
380
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
Thoughts on Productivity
jonyablonski
73
5k
Visualization
eitanlees
150
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
28
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
システム主専攻 着手発表 深層学習における中間表現の分析 潘 秋実 1
Autoencoder Autoencoderとは 教師なし学習の一種。 データの特徴を獲得するためのネットワーク Encoder: Xが得られた状態で、Xを生み出したZを推論 Decoder: 潜在変数Zから高次元データXを生成 Zを中間表現と呼ぶこととする 2
Semi‑supervised learning with Autoencoder Autoencoderによる教師なし学習で獲得したZを、Yを予測する教師あり 学習に利用 Zによって効率が改善する場合があると考えられる 課題意識 → Zを教師ありで行う既存タスクで、Zを教師なしで学習しても精度を出
せないか 3
画像の転移学習におけるAutoencoder 図:中間表現を可視化したもの[1] 画像の輪郭の特徴を抽出 転移学習で学習を効率化 4
SequenceデータにおけるAutoencoder Semantic Parsing with Semi‑Supervised Sequential Autoencoders[2] Logical formsを半教師あり学習で行う研究 xの正解ラベルがないデータではyの教師なし学習
xの正解ラベルがあるデータでは追加でxを学習 5
関連研究: Speech synthesis from neural decoding of spoken sentences (1)
脳の活動から発話をデコードするタスク[3][4] 6
関連研究: Speech synthesis from neural decoding of spoken sentences (2)
RNN+RNNを構成して、一度口の筋肉の動きを予測することで、発話予 測を改善した 7
研究計画 Speech synthesis from neural decoding of spoken sentences の追実験
著者に問い合わせを行い、データを入手できたら再現実験を試みる 筋肉の動きの正解データを用いずに、発話を予測できるようになら ないか 中間表現を使う場合とそうでない場合を比較して効果の分析 画像または自然言語処理などのタスクのサーベイ このタスクに限らず、「中間表現」を経て精度が向上するタスクは あるはず。中間表現の正解ラベルがなくても同等の効果を得られた ら意義があるのではないか 一般的に中間表現を教師なしで代替できないか 8
参考文献 [1] Computer Science Department, Stanford University. "Autoencoders". UFLDL Tutorial.
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/, (Accessed 2019‑06‑11). [2] Tomas Kocisky et al. "Semantic Parsing with Semi‑Supervised Sequential Autoencoders". CoRR. 2016. (Accessed 2019‑06‑11) [3] Anumanchipalli et al. "Speech synthesis from neural decoding of spoken sentences". Nature. 2019. https://www.nature.com/articles/s41586‑019‑1119‑1, (Accessed 2019‑06‑11). [4] Pandarinath, Ali. "Brain implants that let you speak your mind". Nature news & views. https://www.nature.com/articles/d41586‑019‑ 01181‑y, (Accessed 2019‑06‑11). 9