Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Getting Started with TensorFlow
Search
Rebecca Murphy
March 21, 2016
Programming
0
1.5k
Getting Started with TensorFlow
Rebecca Murphy
March 21, 2016
Tweet
Share
More Decks by Rebecca Murphy
See All by Rebecca Murphy
Refreerank
rebecca_roisin
0
120
pyFRET
rebecca_roisin
0
220
Other Decks in Programming
See All in Programming
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
「ブロックテーマでは再現できない」は本当か?
inc2734
0
970
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
460
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
SourceGeneratorのススメ
htkym
0
190
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
960
AgentCoreとHuman in the Loop
har1101
5
230
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
Featured
See All Featured
Crafting Experiences
bethany
1
48
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
We Have a Design System, Now What?
morganepeng
54
8k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
320
Context Engineering - Making Every Token Count
addyosmani
9
650
Everyday Curiosity
cassininazir
0
130
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
My Coaching Mixtape
mlcsv
0
48
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
Transcript
TensorFlow Tutorial Rebecca Murphy
[email protected]
@rebecca_roisin TensorFlow Meetup Monday 21st
March 2016
Talk Overview • TensorFlow overview • Programming Model • Mechanics
of TensorFlow • Installation • Model Definition • Fitting • Checkpointing • TensorBoard visualisations • Why TensorFlow?
TensorFlow: Overview
What Is TensorFlow? • Google’s 2nd generation deep learning library
• Simple API (Python, C++) for: • Describing Machine Learning models • Implementing Machine Learning algorithms
What Can We Do With TensorFlow? • Regression models •
Neural networks • Deep learning: • Distributed representations • Convolutional Networks • Recurrent Neural Networks • LSTM Neural Networks
TensorFlow: Programming Model
TensorFlow: What Is a Tensor? • Tensor: n-dimensional array •
Scalar: 0D Tensor • Vector: 1D Tensor • Matrix: 2D Tensor • Typed: • Int, double, complex, string
Tensor Flows • Tensor Flow computations: stateful dataflow graphs •
Deep learning model = Directed graph • Node: (mathematical) operation • Edge: • Control dependencies • Data flow • Describe graph -> initialize -> execute (parts of ) graph
TensorFlow: Mechanics
Installing TensorFlow • Python API • Python 2.7 • Python
3.3+ • Setup instructions • pip install: • pip install --upgrade https://storage.googleapis. com/tensorflow/mac/tensorflow-0.7.1-cp27-none-any.whl • Docker: • docker run -it b.gcr.io/tensorflow/tensorflow
Mechanics of Learning • Define model • Load data •
Feed data • Make predictions • Evaluate • Visualise
Example Code • Try-tf github repositories • Associated blogpost •
Jason Baldridge @jasonbaldridge
Let’s get Started
Defining the Model
Model Definition: Key Features (1) • Tensor shapes are pre-defined:
• Tensors support mathematical manipulation • Operations are nodes in the model graph
Model Definition: Key Features (2) • Built-in functions for common
Deep Learning operations: • See Neural Network API for more • Gradient descent optimisation: • Variables store current state of model
Training the Model: Loading Data (1) • Load data into
variables • Need to write custom functions to parse data
Training the Model: Loading Data (2)
Training the Model: Sessions • Model graph describes computations •
Computations evaluated within a session: • Places graph onto CPU / GPU • Supplies methods to evaluate graph operations
The Feed Dict: Training the Model • Predefined placeholder tensors
• Feed-dict supplies batch of data
Training the Model: Evaluation • Pre-defined evaluation nodes compare predicted
and true labels: • Evaluate accuracy function within a session:
Checkpoints: Saving Models • Saver class allows model state to
be stored and reloaded • Use checkpoints to periodically save the state of the model
• Saver class allows model state to be stored and
reloaded • Restore a previously trained model Checkpoints: Loading Saved Models
Flags: Controlling Training • tf.app.flags: set command-line arguments • Wraps
python gflags • tf.app.run() parses flags before calling main()
TensorBoard: Visualising Learning
TensorBoard: Basics • TensorFlow visualisation tool • View • Graph
models • Training behaviour • Simple modifications to model code • Browser-based tool
TensorBoard: Annotations
TensorBoard: Scopes
TensorBoard: Saving Output • Set up summary and writer objects
• Periodically run evaluation and store output: • tensorboard --logdir=try_tf_logs/
TensorBoard: Model Visualisation (1)
TensorBoard: Model Visualisation (2)
TensorBoard: Training Visualisation (1)
TensorBoard: Training Visualisation (2)
TensorFlow: Where Next?
Why Use TensorFlow: Great Examples • TensorFlow Tutorials • Handwriting
generation from @hardmaru • Next letter prediction from @karpathy
Why Use TensorFlow: Active Community
TensorFlow: Future Developments • Improved memory usage in gradient calculations
• JIT Compilation • Improved node execution scheduling • Support for parallelisation across many machines • Support for more languages (Java, Lua, Go, R …) • Source: TensorFlow Whitepaper
Thank You!
Questions?