Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Getting Started with TensorFlow
Search
Rebecca Murphy
March 21, 2016
Programming
0
1.4k
Getting Started with TensorFlow
Rebecca Murphy
March 21, 2016
Tweet
Share
More Decks by Rebecca Murphy
See All by Rebecca Murphy
Refreerank
rebecca_roisin
0
120
pyFRET
rebecca_roisin
0
220
Other Decks in Programming
See All in Programming
Is Xcode slowly dying out in 2025?
uetyo
1
270
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
360
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
200
おやつのお供はお決まりですか?@WWDC25 Recap -Japan-\(region).swift
shingangan
0
130
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
5
860
5つのアンチパターンから学ぶLT設計
narihara
1
170
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
2
150
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
170
WebViewの現在地 - SwiftUI時代のWebKit - / The Current State Of WebView
marcy731
0
120
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
110
Systèmes distribués, pour le meilleur et pour le pire - BreizhCamp 2025 - Conférence
slecache
0
120
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
250
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
Code Reviewing Like a Champion
maltzj
524
40k
Statistics for Hackers
jakevdp
799
220k
Rails Girls Zürich Keynote
gr2m
95
14k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Language of Interfaces
destraynor
158
25k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Transcript
TensorFlow Tutorial Rebecca Murphy
[email protected]
@rebecca_roisin TensorFlow Meetup Monday 21st
March 2016
Talk Overview • TensorFlow overview • Programming Model • Mechanics
of TensorFlow • Installation • Model Definition • Fitting • Checkpointing • TensorBoard visualisations • Why TensorFlow?
TensorFlow: Overview
What Is TensorFlow? • Google’s 2nd generation deep learning library
• Simple API (Python, C++) for: • Describing Machine Learning models • Implementing Machine Learning algorithms
What Can We Do With TensorFlow? • Regression models •
Neural networks • Deep learning: • Distributed representations • Convolutional Networks • Recurrent Neural Networks • LSTM Neural Networks
TensorFlow: Programming Model
TensorFlow: What Is a Tensor? • Tensor: n-dimensional array •
Scalar: 0D Tensor • Vector: 1D Tensor • Matrix: 2D Tensor • Typed: • Int, double, complex, string
Tensor Flows • Tensor Flow computations: stateful dataflow graphs •
Deep learning model = Directed graph • Node: (mathematical) operation • Edge: • Control dependencies • Data flow • Describe graph -> initialize -> execute (parts of ) graph
TensorFlow: Mechanics
Installing TensorFlow • Python API • Python 2.7 • Python
3.3+ • Setup instructions • pip install: • pip install --upgrade https://storage.googleapis. com/tensorflow/mac/tensorflow-0.7.1-cp27-none-any.whl • Docker: • docker run -it b.gcr.io/tensorflow/tensorflow
Mechanics of Learning • Define model • Load data •
Feed data • Make predictions • Evaluate • Visualise
Example Code • Try-tf github repositories • Associated blogpost •
Jason Baldridge @jasonbaldridge
Let’s get Started
Defining the Model
Model Definition: Key Features (1) • Tensor shapes are pre-defined:
• Tensors support mathematical manipulation • Operations are nodes in the model graph
Model Definition: Key Features (2) • Built-in functions for common
Deep Learning operations: • See Neural Network API for more • Gradient descent optimisation: • Variables store current state of model
Training the Model: Loading Data (1) • Load data into
variables • Need to write custom functions to parse data
Training the Model: Loading Data (2)
Training the Model: Sessions • Model graph describes computations •
Computations evaluated within a session: • Places graph onto CPU / GPU • Supplies methods to evaluate graph operations
The Feed Dict: Training the Model • Predefined placeholder tensors
• Feed-dict supplies batch of data
Training the Model: Evaluation • Pre-defined evaluation nodes compare predicted
and true labels: • Evaluate accuracy function within a session:
Checkpoints: Saving Models • Saver class allows model state to
be stored and reloaded • Use checkpoints to periodically save the state of the model
• Saver class allows model state to be stored and
reloaded • Restore a previously trained model Checkpoints: Loading Saved Models
Flags: Controlling Training • tf.app.flags: set command-line arguments • Wraps
python gflags • tf.app.run() parses flags before calling main()
TensorBoard: Visualising Learning
TensorBoard: Basics • TensorFlow visualisation tool • View • Graph
models • Training behaviour • Simple modifications to model code • Browser-based tool
TensorBoard: Annotations
TensorBoard: Scopes
TensorBoard: Saving Output • Set up summary and writer objects
• Periodically run evaluation and store output: • tensorboard --logdir=try_tf_logs/
TensorBoard: Model Visualisation (1)
TensorBoard: Model Visualisation (2)
TensorBoard: Training Visualisation (1)
TensorBoard: Training Visualisation (2)
TensorFlow: Where Next?
Why Use TensorFlow: Great Examples • TensorFlow Tutorials • Handwriting
generation from @hardmaru • Next letter prediction from @karpathy
Why Use TensorFlow: Active Community
TensorFlow: Future Developments • Improved memory usage in gradient calculations
• JIT Compilation • Improved node execution scheduling • Support for parallelisation across many machines • Support for more languages (Java, Lua, Go, R …) • Source: TensorFlow Whitepaper
Thank You!
Questions?