Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Getting Started with TensorFlow
Search
Rebecca Murphy
March 21, 2016
Programming
0
1.3k
Getting Started with TensorFlow
Rebecca Murphy
March 21, 2016
Tweet
Share
More Decks by Rebecca Murphy
See All by Rebecca Murphy
Refreerank
rebecca_roisin
0
120
pyFRET
rebecca_roisin
0
210
Other Decks in Programming
See All in Programming
テストコード文化を0から作り、変化し続けた組織
kazatohiei
2
1.5k
モバイルアプリにおける自動テストの導入戦略
ostk0069
0
110
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
4
260
Recoilを剥がしている話
kirik
5
6.6k
useSyncExternalStoreを使いまくる
ssssota
6
1k
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
120
Cloudflare MCP ServerでClaude Desktop からWeb APIを構築
kutakutat
1
540
生成AIでGitHubソースコード取得して仕様書を作成
shukob
0
350
php-conference-japan-2024
tasuku43
0
250
クリエイティブコーディングとRuby学習 / Creative Coding and Learning Ruby
chobishiba
0
3.9k
ドメインイベント増えすぎ問題
h0r15h0
2
290
Refactor your code - refactor yourself
xosofox
1
260
Featured
See All Featured
How GitHub (no longer) Works
holman
311
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
The World Runs on Bad Software
bkeepers
PRO
65
11k
Why Our Code Smells
bkeepers
PRO
335
57k
How to train your dragon (web standard)
notwaldorf
88
5.7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
97
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
A designer walks into a library…
pauljervisheath
204
24k
Transcript
TensorFlow Tutorial Rebecca Murphy
[email protected]
@rebecca_roisin TensorFlow Meetup Monday 21st
March 2016
Talk Overview • TensorFlow overview • Programming Model • Mechanics
of TensorFlow • Installation • Model Definition • Fitting • Checkpointing • TensorBoard visualisations • Why TensorFlow?
TensorFlow: Overview
What Is TensorFlow? • Google’s 2nd generation deep learning library
• Simple API (Python, C++) for: • Describing Machine Learning models • Implementing Machine Learning algorithms
What Can We Do With TensorFlow? • Regression models •
Neural networks • Deep learning: • Distributed representations • Convolutional Networks • Recurrent Neural Networks • LSTM Neural Networks
TensorFlow: Programming Model
TensorFlow: What Is a Tensor? • Tensor: n-dimensional array •
Scalar: 0D Tensor • Vector: 1D Tensor • Matrix: 2D Tensor • Typed: • Int, double, complex, string
Tensor Flows • Tensor Flow computations: stateful dataflow graphs •
Deep learning model = Directed graph • Node: (mathematical) operation • Edge: • Control dependencies • Data flow • Describe graph -> initialize -> execute (parts of ) graph
TensorFlow: Mechanics
Installing TensorFlow • Python API • Python 2.7 • Python
3.3+ • Setup instructions • pip install: • pip install --upgrade https://storage.googleapis. com/tensorflow/mac/tensorflow-0.7.1-cp27-none-any.whl • Docker: • docker run -it b.gcr.io/tensorflow/tensorflow
Mechanics of Learning • Define model • Load data •
Feed data • Make predictions • Evaluate • Visualise
Example Code • Try-tf github repositories • Associated blogpost •
Jason Baldridge @jasonbaldridge
Let’s get Started
Defining the Model
Model Definition: Key Features (1) • Tensor shapes are pre-defined:
• Tensors support mathematical manipulation • Operations are nodes in the model graph
Model Definition: Key Features (2) • Built-in functions for common
Deep Learning operations: • See Neural Network API for more • Gradient descent optimisation: • Variables store current state of model
Training the Model: Loading Data (1) • Load data into
variables • Need to write custom functions to parse data
Training the Model: Loading Data (2)
Training the Model: Sessions • Model graph describes computations •
Computations evaluated within a session: • Places graph onto CPU / GPU • Supplies methods to evaluate graph operations
The Feed Dict: Training the Model • Predefined placeholder tensors
• Feed-dict supplies batch of data
Training the Model: Evaluation • Pre-defined evaluation nodes compare predicted
and true labels: • Evaluate accuracy function within a session:
Checkpoints: Saving Models • Saver class allows model state to
be stored and reloaded • Use checkpoints to periodically save the state of the model
• Saver class allows model state to be stored and
reloaded • Restore a previously trained model Checkpoints: Loading Saved Models
Flags: Controlling Training • tf.app.flags: set command-line arguments • Wraps
python gflags • tf.app.run() parses flags before calling main()
TensorBoard: Visualising Learning
TensorBoard: Basics • TensorFlow visualisation tool • View • Graph
models • Training behaviour • Simple modifications to model code • Browser-based tool
TensorBoard: Annotations
TensorBoard: Scopes
TensorBoard: Saving Output • Set up summary and writer objects
• Periodically run evaluation and store output: • tensorboard --logdir=try_tf_logs/
TensorBoard: Model Visualisation (1)
TensorBoard: Model Visualisation (2)
TensorBoard: Training Visualisation (1)
TensorBoard: Training Visualisation (2)
TensorFlow: Where Next?
Why Use TensorFlow: Great Examples • TensorFlow Tutorials • Handwriting
generation from @hardmaru • Next letter prediction from @karpathy
Why Use TensorFlow: Active Community
TensorFlow: Future Developments • Improved memory usage in gradient calculations
• JIT Compilation • Improved node execution scheduling • Support for parallelisation across many machines • Support for more languages (Java, Lua, Go, R …) • Source: TensorFlow Whitepaper
Thank You!
Questions?