Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Getting Started with TensorFlow
Search
Rebecca Murphy
March 21, 2016
Programming
0
1.5k
Getting Started with TensorFlow
Rebecca Murphy
March 21, 2016
Tweet
Share
More Decks by Rebecca Murphy
See All by Rebecca Murphy
Refreerank
rebecca_roisin
0
120
pyFRET
rebecca_roisin
0
220
Other Decks in Programming
See All in Programming
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
230
Implementation Patterns
denyspoltorak
0
280
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
170
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
280
ぼくの開発環境2026
yuzneri
0
220
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
130
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
CSC307 Lecture 05
javiergs
PRO
0
500
2026年 エンジニアリング自己学習法
yumechi
0
130
Grafana:建立系統全知視角的捷徑
blueswen
0
330
Featured
See All Featured
Navigating Team Friction
lara
192
16k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
65
Building Adaptive Systems
keathley
44
2.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
53
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Tell your own story through comics
letsgokoyo
1
810
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Paper Plane
katiecoart
PRO
0
46k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Transcript
TensorFlow Tutorial Rebecca Murphy
[email protected]
@rebecca_roisin TensorFlow Meetup Monday 21st
March 2016
Talk Overview • TensorFlow overview • Programming Model • Mechanics
of TensorFlow • Installation • Model Definition • Fitting • Checkpointing • TensorBoard visualisations • Why TensorFlow?
TensorFlow: Overview
What Is TensorFlow? • Google’s 2nd generation deep learning library
• Simple API (Python, C++) for: • Describing Machine Learning models • Implementing Machine Learning algorithms
What Can We Do With TensorFlow? • Regression models •
Neural networks • Deep learning: • Distributed representations • Convolutional Networks • Recurrent Neural Networks • LSTM Neural Networks
TensorFlow: Programming Model
TensorFlow: What Is a Tensor? • Tensor: n-dimensional array •
Scalar: 0D Tensor • Vector: 1D Tensor • Matrix: 2D Tensor • Typed: • Int, double, complex, string
Tensor Flows • Tensor Flow computations: stateful dataflow graphs •
Deep learning model = Directed graph • Node: (mathematical) operation • Edge: • Control dependencies • Data flow • Describe graph -> initialize -> execute (parts of ) graph
TensorFlow: Mechanics
Installing TensorFlow • Python API • Python 2.7 • Python
3.3+ • Setup instructions • pip install: • pip install --upgrade https://storage.googleapis. com/tensorflow/mac/tensorflow-0.7.1-cp27-none-any.whl • Docker: • docker run -it b.gcr.io/tensorflow/tensorflow
Mechanics of Learning • Define model • Load data •
Feed data • Make predictions • Evaluate • Visualise
Example Code • Try-tf github repositories • Associated blogpost •
Jason Baldridge @jasonbaldridge
Let’s get Started
Defining the Model
Model Definition: Key Features (1) • Tensor shapes are pre-defined:
• Tensors support mathematical manipulation • Operations are nodes in the model graph
Model Definition: Key Features (2) • Built-in functions for common
Deep Learning operations: • See Neural Network API for more • Gradient descent optimisation: • Variables store current state of model
Training the Model: Loading Data (1) • Load data into
variables • Need to write custom functions to parse data
Training the Model: Loading Data (2)
Training the Model: Sessions • Model graph describes computations •
Computations evaluated within a session: • Places graph onto CPU / GPU • Supplies methods to evaluate graph operations
The Feed Dict: Training the Model • Predefined placeholder tensors
• Feed-dict supplies batch of data
Training the Model: Evaluation • Pre-defined evaluation nodes compare predicted
and true labels: • Evaluate accuracy function within a session:
Checkpoints: Saving Models • Saver class allows model state to
be stored and reloaded • Use checkpoints to periodically save the state of the model
• Saver class allows model state to be stored and
reloaded • Restore a previously trained model Checkpoints: Loading Saved Models
Flags: Controlling Training • tf.app.flags: set command-line arguments • Wraps
python gflags • tf.app.run() parses flags before calling main()
TensorBoard: Visualising Learning
TensorBoard: Basics • TensorFlow visualisation tool • View • Graph
models • Training behaviour • Simple modifications to model code • Browser-based tool
TensorBoard: Annotations
TensorBoard: Scopes
TensorBoard: Saving Output • Set up summary and writer objects
• Periodically run evaluation and store output: • tensorboard --logdir=try_tf_logs/
TensorBoard: Model Visualisation (1)
TensorBoard: Model Visualisation (2)
TensorBoard: Training Visualisation (1)
TensorBoard: Training Visualisation (2)
TensorFlow: Where Next?
Why Use TensorFlow: Great Examples • TensorFlow Tutorials • Handwriting
generation from @hardmaru • Next letter prediction from @karpathy
Why Use TensorFlow: Active Community
TensorFlow: Future Developments • Improved memory usage in gradient calculations
• JIT Compilation • Improved node execution scheduling • Support for parallelisation across many machines • Support for more languages (Java, Lua, Go, R …) • Source: TensorFlow Whitepaper
Thank You!
Questions?