Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Reformer: The Efficient Transformer
Search
Reo
May 27, 2020
Technology
0
240
論文紹介 Reformer: The Efficient Transformer
I will give a presentation on the following paper.
https://openreview.net/forum?id=rkgNKkHtvB
Reo
May 27, 2020
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
reo11
0
40
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
150
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
240
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
170
NAACL読み会 Attention is not Explanation
reo11
0
100
Other Decks in Technology
See All in Technology
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.7k
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
900
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
390
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
290
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
110
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
230
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
220
なぜSaaSがMCPサーバーをサービス提供するのか?
sansantech
PRO
8
2.8k
「Linux」という言葉が指すもの
sat
PRO
4
120
人工衛星のファームウェアをRustで書く理由
koba789
14
7.6k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
4 Signs Your Business is Dying
shpigford
184
22k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Docker and Python
trallard
45
3.6k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
KATA
mclloyd
32
14k
Site-Speed That Sticks
csswizardry
10
810
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Typedesign – Prime Four
hannesfritz
42
2.8k
Transcript
Reformer: The Efficient Transformer Nikita Kitaev*, Lukasz Kaiser*, Anselm Levskaya*
*Google Research ICLR 2020 紹介者: 平尾 礼央(TMU, M1, 小町研究室) 26 May, 2020 @論文紹介
Abstract • Transformerの計算時間、メモリ使用量を効率化したReformerの提案 • Attention Weightが小さいものを計算するのは無駄 ➢ Locality Sensitive Hashingで近いものだけ計算
• 逆伝播のために各レイヤで値を保持しておくのがメモリを圧迫 ➢ Reversible Layerで逆伝播時に毎回計算 • Transformerと同程度の性能でメモリ効率を改善し、長い系列で高速化する 事に成功
Introduction • Transformerを使ったモデルは様々なNLPタスクでSoTA • 最近のモデルはレイヤ数、系列長が増加し、パラメータ数も膨大 • 計算資源がある限られた研究所だけが訓練できる • 計算が増える原因と対策: ◦
Attentionの計算では系列長Lに対して、時間、空間(メモリ)共に O(L^2)で増加 ➢ Locality Sensitive Hashingでクラスタに分け、近い単語のみを計算 ◦ レイヤ数がN倍になるとそれぞれのレイヤが格納しておくべき activationがN倍 ➢ Reversible Layerで全体で1つのactivation(1つ後のレイヤ出力)さえあればよい
Locality Sensitive Hashing(LSH) • Hash関数を使った近似近傍点探索アルゴリズム • n次元空間用のkd-treeのようなもの • k個のn-1次元の超平面を使用することで2^kクラスタに分けることができる https://www.researchgate.net/figure/Locality-sensitive-hashing-LSH_fig4_314300245
https://databricks.com/blog/2017/05/09/detecting-abuse-scale-locality-sensitive-hashing-uber-engineering.html https://www.youtube.com/watch?reload=9&v=LqcwaW2YE_c
Locality Sensitive Hashing Attention LSHによる ハッシュ化 同じグループ 同士で計算
Complexity in Attention Part • nr: ハッシュを繰り返す回数 ◦ LSHはシードによって異なる bucketに分けられる可能性があるため
• nc: LSHのchunk数 ◦ Lが長くなるほど増えるため、 L/ncが実質logL ➢ これでAttentionの計算量の問題は解決!では逆伝播は?
Reversible Residual Networks (Gomez et al. NIPS 2017) • 通常は順伝播時に各レイヤで値
(activation)を持っていないといけない • 下図のように各レイヤを反転すると元の値が求まるようにする • activationの数を全体で1/Lに出来る(L: レイヤ数)
Complexity of Reformer • Reversible Residual Networksと同様に各レイヤで反転できるように変更 • 空間、時間計算量共にLが取れてc(O(logL)) になっている
Experiments • データセット ◦ enwik8: 入力トークン64k ◦ imagenet64: 入力トークン12k •
パープレキシティカーブ(横軸: steps、縦軸: bpd(?)) ◦ 通常のTransformerとほぼ同じ
Translation Task • WMT2014 English-to-German ◦ オリジナルのTransformerとほぼ同じ
Number of Hashing and Layers • ハッシュは8回以上繰り返すことでオリジナルとほぼ一致 • レイヤ数を増やすほど改善
Speed of Transformer and Reformer • 系列長が1024程度だと従来のTransformerの方が高速 ◦ hash回数が1~4だと精度が落ちる •
系列長が2048以上になるとReformerの方が早い
Conclusion • ReformerはTransformerと同程度の表現力を持つ • 長い系列でも効率的に実行でき、レイヤ数が増えても少ないメモリ使用量で実行で きる • これにより、計算資源が少なくても大きいTransformerモデルを扱える • 時系列や動画、音楽など幅広い分野でTransformerを使うことできる