Upgrade to Pro — share decks privately, control downloads, hide ads and more …

論文紹介 Taking Notes on the Fly Helps Language Pre...

Reo
June 10, 2021

論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig

Reo

June 10, 2021
Tweet

More Decks by Reo

Other Decks in Research

Transcript

  1. Taking Notes on the Fly Helps Language Pre-Training Qiyu Wu,

    Chen Xing, Yatao Li, Guolin Ke, Di He, Tie-Yan Liu Peking University, Nankai University, Microsoft Research ICLR 2021 紹介者: 平尾 礼央(TMU, M2, 小町研究室) 9 June, 2021 @論文紹介
  2. Abstract • 言語モデルの低頻度語問題 ◦ BERT等のモデルは教師なしで言語表現を学習しているが、低頻度語は十分なデータがな く、最適化が不十分でノイズとなりやすい • 低頻度語の辞書を別に用意することで解決 ◦ 低頻語の辞書(Note

    Embedding)を追加する、Taking Notes on the Fly(TNF)を提案 ◦ 低頻度語出現時にそちらのベクトルも使用、更新 • BERT、ELECTRAで実験 ◦ 同じlossになるまでの事前学習時間が 60%短縮 ◦ 同じiteration数でGLUEスコア上昇
  3. Taking Notes on the Fly • データセット ◦ BERTと同じWikipedia corpusとBook

    corpus ◦ 合計3.47B words • 低頻度語の定義 ◦ 事前学習データセットの中で 100~500回出現する単語 ◦ 合計200K words程度出現 • 低頻度語の辞書(NoteDict) ◦ word/positional embeddingと同様の方法で初期化、以下の式で更新 ◦ Note: 単語wと入力系列xに対する、wのサブワードに対応する encoder出力(s-k~t+kでkは周辺語の 知識獲得の為のwindow幅) ◦ NoteDict: 学習時の更新方法(今回は γ=0.1, k=16)
  4. Pre-training Efficiency • 事前学習 ◦ BERT: Masked Language Modelのみ、ELECTRA: Replace

    Token Detection • 事前学習の学習効率、GLUEスコア改善 ◦ 下図 (a), (b)で、TNFを使った方がlossの減りが早い ◦ (c)では、同じIteration数でもTNFの方がGLUEスコアが高い ▪ TNFにより低頻度語のノイズを減らせたため効率 ↑
  5. Conclusion • 言語モデル学習時の低頻度語問題に注目 ◦ 低頻度語の不十分な学習による、全体の事前学習効率低下の可能性を指摘 ◦ 低頻度語用の辞書を持つ Taking Notes on

    the Fly(TNF)を提案 • 低頻度語用の辞書 ◦ 使用時にその辞書から呼び出すことで情報強化 ◦ encoder出力を使用し、直接更新をかける • まとめ ◦ 同じ性能に達するまでの事前学習時間 60%短縮 ◦ 同じ数のiteration数でTNFを使った方がGLUEスコアが高い ◦ 特に下流タスクのデータが少ない場合に有効 • open reviewのコメント ◦ シンプルな手法で良い結果になっているが、分析が不十分( 6,6,6,7)