Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Taking Notes on the Fly Helps Language Pre...
Search
Reo
June 10, 2021
Research
0
40
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
Reo
June 10, 2021
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Reformer: The Efficient Transformer
reo11
0
240
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
160
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
240
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
170
NAACL読み会 Attention is not Explanation
reo11
0
120
Other Decks in Research
See All in Research
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
140
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
310
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
550
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
680
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
160
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
220
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
5.8k
20250725-bet-ai-day
cipepser
2
500
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
860
Remote sensing × Multi-modal meta survey
satai
4
530
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
320
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Embracing the Ebb and Flow
colly
88
4.9k
Automating Front-end Workflow
addyosmani
1371
200k
Agile that works and the tools we love
rasmusluckow
331
21k
Designing for Performance
lara
610
69k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Keith and Marios Guide to Fast Websites
keithpitt
412
23k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Thoughts on Productivity
jonyablonski
72
4.9k
Transcript
Taking Notes on the Fly Helps Language Pre-Training Qiyu Wu,
Chen Xing, Yatao Li, Guolin Ke, Di He, Tie-Yan Liu Peking University, Nankai University, Microsoft Research ICLR 2021 紹介者: 平尾 礼央(TMU, M2, 小町研究室) 9 June, 2021 @論文紹介
Abstract • 言語モデルの低頻度語問題 ◦ BERT等のモデルは教師なしで言語表現を学習しているが、低頻度語は十分なデータがな く、最適化が不十分でノイズとなりやすい • 低頻度語の辞書を別に用意することで解決 ◦ 低頻語の辞書(Note
Embedding)を追加する、Taking Notes on the Fly(TNF)を提案 ◦ 低頻度語出現時にそちらのベクトルも使用、更新 • BERT、ELECTRAで実験 ◦ 同じlossになるまでの事前学習時間が 60%短縮 ◦ 同じiteration数でGLUEスコア上昇
Introduction • 左下の図のようなMLMの学習を行う場合、低頻度語「COVID-19」の情報が少ないので、周辺 の文脈から予測し、間違った単語を予測してしまう • 低頻度語用の辞書を別に持ち、都度更新することで「 COVID-19」が出現する別の文の情報を 増やすことができる
Taking Notes on the Fly • データセット ◦ BERTと同じWikipedia corpusとBook
corpus ◦ 合計3.47B words • 低頻度語の定義 ◦ 事前学習データセットの中で 100~500回出現する単語 ◦ 合計200K words程度出現 • 低頻度語の辞書(NoteDict) ◦ word/positional embeddingと同様の方法で初期化、以下の式で更新 ◦ Note: 単語wと入力系列xに対する、wのサブワードに対応する encoder出力(s-k~t+kでkは周辺語の 知識獲得の為のwindow幅) ◦ NoteDict: 学習時の更新方法(今回は γ=0.1, k=16)
The training framework of Taking Notes on the FLY
Pre-training Efficiency • 事前学習 ◦ BERT: Masked Language Modelのみ、ELECTRA: Replace
Token Detection • 事前学習の学習効率、GLUEスコア改善 ◦ 下図 (a), (b)で、TNFを使った方がlossの減りが早い ◦ (c)では、同じIteration数でもTNFの方がGLUEスコアが高い ▪ TNFにより低頻度語のノイズを減らせたため効率 ↑
Results • GLUEの各タスクと全体のスコア ◦ F: fine-tune時もNoteDictの更新 ◦ U: fine-tune時はback-propagationにより学習 ◦
TNFは下流タスクのデータが小さい時に特に効果的な初期状態を提供する
Conclusion • 言語モデル学習時の低頻度語問題に注目 ◦ 低頻度語の不十分な学習による、全体の事前学習効率低下の可能性を指摘 ◦ 低頻度語用の辞書を持つ Taking Notes on
the Fly(TNF)を提案 • 低頻度語用の辞書 ◦ 使用時にその辞書から呼び出すことで情報強化 ◦ encoder出力を使用し、直接更新をかける • まとめ ◦ 同じ性能に達するまでの事前学習時間 60%短縮 ◦ 同じ数のiteration数でTNFを使った方がGLUEスコアが高い ◦ 特に下流タスクのデータが少ない場合に有効 • open reviewのコメント ◦ シンプルな手法で良い結果になっているが、分析が不十分( 6,6,6,7)