Upgrade to Pro — share decks privately, control downloads, hide ads and more …

論文紹介 Taking Notes on the Fly Helps Language Pre...

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Reo Reo
June 10, 2021

論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig

Avatar for Reo

Reo

June 10, 2021
Tweet

More Decks by Reo

Other Decks in Research

Transcript

  1. Taking Notes on the Fly Helps Language Pre-Training Qiyu Wu,

    Chen Xing, Yatao Li, Guolin Ke, Di He, Tie-Yan Liu Peking University, Nankai University, Microsoft Research ICLR 2021 紹介者: 平尾 礼央(TMU, M2, 小町研究室) 9 June, 2021 @論文紹介
  2. Abstract • 言語モデルの低頻度語問題 ◦ BERT等のモデルは教師なしで言語表現を学習しているが、低頻度語は十分なデータがな く、最適化が不十分でノイズとなりやすい • 低頻度語の辞書を別に用意することで解決 ◦ 低頻語の辞書(Note

    Embedding)を追加する、Taking Notes on the Fly(TNF)を提案 ◦ 低頻度語出現時にそちらのベクトルも使用、更新 • BERT、ELECTRAで実験 ◦ 同じlossになるまでの事前学習時間が 60%短縮 ◦ 同じiteration数でGLUEスコア上昇
  3. Taking Notes on the Fly • データセット ◦ BERTと同じWikipedia corpusとBook

    corpus ◦ 合計3.47B words • 低頻度語の定義 ◦ 事前学習データセットの中で 100~500回出現する単語 ◦ 合計200K words程度出現 • 低頻度語の辞書(NoteDict) ◦ word/positional embeddingと同様の方法で初期化、以下の式で更新 ◦ Note: 単語wと入力系列xに対する、wのサブワードに対応する encoder出力(s-k~t+kでkは周辺語の 知識獲得の為のwindow幅) ◦ NoteDict: 学習時の更新方法(今回は γ=0.1, k=16)
  4. Pre-training Efficiency • 事前学習 ◦ BERT: Masked Language Modelのみ、ELECTRA: Replace

    Token Detection • 事前学習の学習効率、GLUEスコア改善 ◦ 下図 (a), (b)で、TNFを使った方がlossの減りが早い ◦ (c)では、同じIteration数でもTNFの方がGLUEスコアが高い ▪ TNFにより低頻度語のノイズを減らせたため効率 ↑
  5. Conclusion • 言語モデル学習時の低頻度語問題に注目 ◦ 低頻度語の不十分な学習による、全体の事前学習効率低下の可能性を指摘 ◦ 低頻度語用の辞書を持つ Taking Notes on

    the Fly(TNF)を提案 • 低頻度語用の辞書 ◦ 使用時にその辞書から呼び出すことで情報強化 ◦ encoder出力を使用し、直接更新をかける • まとめ ◦ 同じ性能に達するまでの事前学習時間 60%短縮 ◦ 同じ数のiteration数でTNFを使った方がGLUEスコアが高い ◦ 特に下流タスクのデータが少ない場合に有効 • open reviewのコメント ◦ シンプルな手法で良い結果になっているが、分析が不十分( 6,6,6,7)