Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Taking Notes on the Fly Helps Language Pre...
Search
Reo
June 10, 2021
Research
0
42
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
Reo
June 10, 2021
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Reformer: The Efficient Transformer
reo11
0
250
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
160
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
250
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
180
NAACL読み会 Attention is not Explanation
reo11
0
150
Other Decks in Research
See All in Research
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
710
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
370
投資戦略202508
pw
0
580
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
160
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
820
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
140
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
870
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
360
Nullspace MPC
mizuhoaoki
1
470
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
170
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
950
Featured
See All Featured
A better future with KSS
kneath
240
18k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Optimizing for Happiness
mojombo
379
70k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Rails Girls Zürich Keynote
gr2m
95
14k
Music & Morning Musume
bryan
46
7k
Embracing the Ebb and Flow
colly
88
4.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Mobile First: as difficult as doing things right
swwweet
225
10k
RailsConf 2023
tenderlove
30
1.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
Taking Notes on the Fly Helps Language Pre-Training Qiyu Wu,
Chen Xing, Yatao Li, Guolin Ke, Di He, Tie-Yan Liu Peking University, Nankai University, Microsoft Research ICLR 2021 紹介者: 平尾 礼央(TMU, M2, 小町研究室) 9 June, 2021 @論文紹介
Abstract • 言語モデルの低頻度語問題 ◦ BERT等のモデルは教師なしで言語表現を学習しているが、低頻度語は十分なデータがな く、最適化が不十分でノイズとなりやすい • 低頻度語の辞書を別に用意することで解決 ◦ 低頻語の辞書(Note
Embedding)を追加する、Taking Notes on the Fly(TNF)を提案 ◦ 低頻度語出現時にそちらのベクトルも使用、更新 • BERT、ELECTRAで実験 ◦ 同じlossになるまでの事前学習時間が 60%短縮 ◦ 同じiteration数でGLUEスコア上昇
Introduction • 左下の図のようなMLMの学習を行う場合、低頻度語「COVID-19」の情報が少ないので、周辺 の文脈から予測し、間違った単語を予測してしまう • 低頻度語用の辞書を別に持ち、都度更新することで「 COVID-19」が出現する別の文の情報を 増やすことができる
Taking Notes on the Fly • データセット ◦ BERTと同じWikipedia corpusとBook
corpus ◦ 合計3.47B words • 低頻度語の定義 ◦ 事前学習データセットの中で 100~500回出現する単語 ◦ 合計200K words程度出現 • 低頻度語の辞書(NoteDict) ◦ word/positional embeddingと同様の方法で初期化、以下の式で更新 ◦ Note: 単語wと入力系列xに対する、wのサブワードに対応する encoder出力(s-k~t+kでkは周辺語の 知識獲得の為のwindow幅) ◦ NoteDict: 学習時の更新方法(今回は γ=0.1, k=16)
The training framework of Taking Notes on the FLY
Pre-training Efficiency • 事前学習 ◦ BERT: Masked Language Modelのみ、ELECTRA: Replace
Token Detection • 事前学習の学習効率、GLUEスコア改善 ◦ 下図 (a), (b)で、TNFを使った方がlossの減りが早い ◦ (c)では、同じIteration数でもTNFの方がGLUEスコアが高い ▪ TNFにより低頻度語のノイズを減らせたため効率 ↑
Results • GLUEの各タスクと全体のスコア ◦ F: fine-tune時もNoteDictの更新 ◦ U: fine-tune時はback-propagationにより学習 ◦
TNFは下流タスクのデータが小さい時に特に効果的な初期状態を提供する
Conclusion • 言語モデル学習時の低頻度語問題に注目 ◦ 低頻度語の不十分な学習による、全体の事前学習効率低下の可能性を指摘 ◦ 低頻度語用の辞書を持つ Taking Notes on
the Fly(TNF)を提案 • 低頻度語用の辞書 ◦ 使用時にその辞書から呼び出すことで情報強化 ◦ encoder出力を使用し、直接更新をかける • まとめ ◦ 同じ性能に達するまでの事前学習時間 60%短縮 ◦ 同じ数のiteration数でTNFを使った方がGLUEスコアが高い ◦ 特に下流タスクのデータが少ない場合に有効 • open reviewのコメント ◦ シンプルな手法で良い結果になっているが、分析が不十分( 6,6,6,7)