Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NAACL読み会 Attention is not Explanation
Search
Reo
August 01, 2019
Research
0
73
NAACL読み会 Attention is not Explanation
2019年8月1日 小町研究室 NAACL読み会
Reo
August 01, 2019
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
reo11
0
32
論文紹介 Reformer: The Efficient Transformer
reo11
0
200
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
130
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
190
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
150
Other Decks in Research
See All in Research
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
270
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
220
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
730
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
YANS2024: 目指せ国際会議!「あぶない国際会議」
hpprc
0
100
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
4
930
RSJ2024「基盤モデルの実ロボット応用」チュートリアルA(河原塚)
haraduka
3
700
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
530
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
810
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
690
機械学習でヒトの行動を変える
hiromu1996
1
390
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
180
Featured
See All Featured
For a Future-Friendly Web
brad_frost
175
9.4k
4 Signs Your Business is Dying
shpigford
182
21k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Music & Morning Musume
bryan
46
6.2k
Automating Front-end Workflow
addyosmani
1366
200k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Typedesign – Prime Four
hannesfritz
40
2.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Statistics for Hackers
jakevdp
796
220k
What's in a price? How to price your products and services
michaelherold
243
12k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
Attention is not Explanation Sarthak Jain, Byron C. Wallace Northeastern
University NAACLಡΈձ 2019/8/1 ฏඌྱԝ
概要 • Attentionは様々なNLPタスクで利⽤される • その重みが「出⼒に対する重要性」として扱われる Øしかし、重みと出⼒の関係は明らかではない • 標準的なAttentionは意味のある説明を提供していない Øよって、それらが説明的であると扱われるべきではない
検証⽅法 1. Attentionによる重みと素性重要度の相関 Ø 例えば勾配に基づく重要度と相関があるはず 2. 重みを別の設定にした場合の予測結果への影響 Ø 事実に反した設定にすれば予測結果は悪くなるはず •
RNNエンコーダを使った以下の3つのタスクで実験 • テキスト分類 • 質問応答(QA) • ⾃然⾔語推論(NLI)
データセット 上からテキスト分類、質問応答、⾃然⾔語推論のデータセット
相関の検証 • 相関はKendall順位相関係数を使⽤ Ø 2つのリストの順序の⼀致度を測定 • Gradient(3, 4⾏⽬) Ø 統計的に求めた重要度
• Leave One Out(5, 6⾏⽬) Ø 系列からt番⽬を抜き出した時の精度の下り⽅からtの重要度を決める 1 2 3 4 5 6
Kendall順位相関係数
Kendall順位相関係数の分布 • 各データの相関係数の分布 • SNLI以外 ü橙⾊がpositive ü灰(紫)⾊がnegative • SNLI ü灰(紫)⾊が⽭盾
ü橙⾊が含意 ü緑が中⽴を表す üBiLSTMでは、平均0.5以下 üAverageでも、0.6~0.8程度
Attentionの重みを変更 • 2つの⽅法でAttentionを変更する • Attention Permutation • Attentionの重みのシャッフルを⾏う • 出⼒の差の中央値を取る
• Adversarial Attention • 出⼒を変えずにAttentionを変化させる
Attentionの重みをシャッフル • 1に近い⽅が影響が⼤きい • 橙⾊の部分 • 出⼒への影響が⼩さい • ⻘⾊の部分 •
出⼒への影響が⼤きい • QAのタスク • Diabetes • ⾼確率で糖尿病を⽰すトークン があるため
Attentionの分布を変える • 出⼒をあまり変化させずに、Attentionの分布を変更可能
Attentionの分布を変える • Attentionの重みが⼤きいものでも変えられるものが結構ある
まとめ üAttentionの重みと重要度の相関は弱い üAttentionの重みを変更しても結果が変わらないものもある üヒートマップによる解釈性にあまり意味はない