Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NAACL読み会 Attention is not Explanation
Search
Reo
August 01, 2019
Research
0
120
NAACL読み会 Attention is not Explanation
2019年8月1日 小町研究室 NAACL読み会
Reo
August 01, 2019
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
reo11
0
40
論文紹介 Reformer: The Efficient Transformer
reo11
0
240
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
150
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
240
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
170
Other Decks in Research
See All in Research
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
690
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
860
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.7k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
31k
投資戦略202508
pw
0
570
Combinatorial Search with Generators
kei18
0
970
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
340
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
620
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
350
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
610
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
160
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Cost Of JavaScript in 2023
addyosmani
54
9k
It's Worth the Effort
3n
187
28k
Faster Mobile Websites
deanohume
310
31k
Thoughts on Productivity
jonyablonski
70
4.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
Attention is not Explanation Sarthak Jain, Byron C. Wallace Northeastern
University NAACLಡΈձ 2019/8/1 ฏඌྱԝ
概要 • Attentionは様々なNLPタスクで利⽤される • その重みが「出⼒に対する重要性」として扱われる Øしかし、重みと出⼒の関係は明らかではない • 標準的なAttentionは意味のある説明を提供していない Øよって、それらが説明的であると扱われるべきではない
検証⽅法 1. Attentionによる重みと素性重要度の相関 Ø 例えば勾配に基づく重要度と相関があるはず 2. 重みを別の設定にした場合の予測結果への影響 Ø 事実に反した設定にすれば予測結果は悪くなるはず •
RNNエンコーダを使った以下の3つのタスクで実験 • テキスト分類 • 質問応答(QA) • ⾃然⾔語推論(NLI)
データセット 上からテキスト分類、質問応答、⾃然⾔語推論のデータセット
相関の検証 • 相関はKendall順位相関係数を使⽤ Ø 2つのリストの順序の⼀致度を測定 • Gradient(3, 4⾏⽬) Ø 統計的に求めた重要度
• Leave One Out(5, 6⾏⽬) Ø 系列からt番⽬を抜き出した時の精度の下り⽅からtの重要度を決める 1 2 3 4 5 6
Kendall順位相関係数
Kendall順位相関係数の分布 • 各データの相関係数の分布 • SNLI以外 ü橙⾊がpositive ü灰(紫)⾊がnegative • SNLI ü灰(紫)⾊が⽭盾
ü橙⾊が含意 ü緑が中⽴を表す üBiLSTMでは、平均0.5以下 üAverageでも、0.6~0.8程度
Attentionの重みを変更 • 2つの⽅法でAttentionを変更する • Attention Permutation • Attentionの重みのシャッフルを⾏う • 出⼒の差の中央値を取る
• Adversarial Attention • 出⼒を変えずにAttentionを変化させる
Attentionの重みをシャッフル • 1に近い⽅が影響が⼤きい • 橙⾊の部分 • 出⼒への影響が⼩さい • ⻘⾊の部分 •
出⼒への影響が⼤きい • QAのタスク • Diabetes • ⾼確率で糖尿病を⽰すトークン があるため
Attentionの分布を変える • 出⼒をあまり変化させずに、Attentionの分布を変更可能
Attentionの分布を変える • Attentionの重みが⼤きいものでも変えられるものが結構ある
まとめ üAttentionの重みと重要度の相関は弱い üAttentionの重みを変更しても結果が変わらないものもある üヒートマップによる解釈性にあまり意味はない