Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NAACL読み会 Attention is not Explanation
Search
Reo
August 01, 2019
Research
0
73
NAACL読み会 Attention is not Explanation
2019年8月1日 小町研究室 NAACL読み会
Reo
August 01, 2019
Tweet
Share
More Decks by Reo
See All by Reo
論文紹介 Taking Notes on the Fly Helps Language Pre-Trainig
reo11
0
32
論文紹介 Reformer: The Efficient Transformer
reo11
0
200
EMNLP論文紹介 The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
reo11
0
130
論文読み会 How Large Are Lions? Inducing Distributions over Quantitative Attributes
reo11
1
180
ACL読み会 Give Me More Feedback II: Annotating Thesis Strength and Related Attributes in Student Essays
reo11
0
140
Other Decks in Research
See All in Research
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
120
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.4k
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
54
19k
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
530
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
210
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
170
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
690
CVPR2024論文紹介:Segmentation
hinako0123
0
150
機械学習でヒトの行動を変える
hiromu1996
1
280
「並列化時代の乱数生成」
abap34
3
810
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
370
Y.Morita_20240726_JBUG_Fukuoka#18
ymorita613
0
280
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
Bash Introduction
62gerente
608
210k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
820
Building a Scalable Design System with Sketch
lauravandoore
459
33k
The Language of Interfaces
destraynor
154
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Rails Girls Zürich Keynote
gr2m
93
13k
Docker and Python
trallard
40
3.1k
We Have a Design System, Now What?
morganepeng
50
7.2k
Transcript
Attention is not Explanation Sarthak Jain, Byron C. Wallace Northeastern
University NAACLಡΈձ 2019/8/1 ฏඌྱԝ
概要 • Attentionは様々なNLPタスクで利⽤される • その重みが「出⼒に対する重要性」として扱われる Øしかし、重みと出⼒の関係は明らかではない • 標準的なAttentionは意味のある説明を提供していない Øよって、それらが説明的であると扱われるべきではない
検証⽅法 1. Attentionによる重みと素性重要度の相関 Ø 例えば勾配に基づく重要度と相関があるはず 2. 重みを別の設定にした場合の予測結果への影響 Ø 事実に反した設定にすれば予測結果は悪くなるはず •
RNNエンコーダを使った以下の3つのタスクで実験 • テキスト分類 • 質問応答(QA) • ⾃然⾔語推論(NLI)
データセット 上からテキスト分類、質問応答、⾃然⾔語推論のデータセット
相関の検証 • 相関はKendall順位相関係数を使⽤ Ø 2つのリストの順序の⼀致度を測定 • Gradient(3, 4⾏⽬) Ø 統計的に求めた重要度
• Leave One Out(5, 6⾏⽬) Ø 系列からt番⽬を抜き出した時の精度の下り⽅からtの重要度を決める 1 2 3 4 5 6
Kendall順位相関係数
Kendall順位相関係数の分布 • 各データの相関係数の分布 • SNLI以外 ü橙⾊がpositive ü灰(紫)⾊がnegative • SNLI ü灰(紫)⾊が⽭盾
ü橙⾊が含意 ü緑が中⽴を表す üBiLSTMでは、平均0.5以下 üAverageでも、0.6~0.8程度
Attentionの重みを変更 • 2つの⽅法でAttentionを変更する • Attention Permutation • Attentionの重みのシャッフルを⾏う • 出⼒の差の中央値を取る
• Adversarial Attention • 出⼒を変えずにAttentionを変化させる
Attentionの重みをシャッフル • 1に近い⽅が影響が⼤きい • 橙⾊の部分 • 出⼒への影響が⼩さい • ⻘⾊の部分 •
出⼒への影響が⼤きい • QAのタスク • Diabetes • ⾼確率で糖尿病を⽰すトークン があるため
Attentionの分布を変える • 出⼒をあまり変化させずに、Attentionの分布を変更可能
Attentionの分布を変える • Attentionの重みが⼤きいものでも変えられるものが結構ある
まとめ üAttentionの重みと重要度の相関は弱い üAttentionの重みを変更しても結果が変わらないものもある üヒートマップによる解釈性にあまり意味はない