Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LoRAによるメモリ使用量削減の検証
Search
RevComm_inc
June 02, 2023
Technology
1
2.1k
LoRAによるメモリ使用量削減の検証
機械学習モデルの学習の際のメモリ要件を下げることができる、Low-Rank Adaptation (LoRA)の評価を行いました。評価では、対話要約のデータセットであるSAMSumを使用しました。
RevComm_inc
June 02, 2023
Tweet
Share
More Decks by RevComm_inc
See All by RevComm_inc
フロントエンドの状態管理とMiiTelにおける事例の紹介
revcomm_inc
2
580
“駆け出しPlatformチーム"の立ち上がりとこれから
revcomm_inc
0
150
Company Deck -English-
revcomm_inc
1
130
2024-02-07 ソフトウェアエンジニアリングの枠を超えて:テックブログ運営で見つけた自分の役割(DevRel/Tokyo #89 〜テックブログ運営〜)
revcomm_inc
0
83
エンジニア不足の中で どう技術的負債と向き合ったのか RevComm Research の場合 -
revcomm_inc
5
9.3k
Feature Flagについて本気出して考えて実践してみた
revcomm_inc
8
6.5k
快適なテスト体験を実現する、Djangoのテスト思想と工夫
revcomm_inc
0
1.9k
Djangoの特徴とRevCommにおける選定理由
revcomm_inc
1
1k
会社紹介資料/Company Deck
revcomm_inc
3
74k
Other Decks in Technology
See All in Technology
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
280
オブザーバビリティが広げる AIOps の世界 / The World of AIOps Expanded by Observability
aoto
PRO
0
300
Kiroと学ぶコンテキストエンジニアリング
oikon48
6
8.6k
スプリントレトロスペクティブはチーム観察の宝庫? 〜チームの衝突レベルに合わせたアプローチ仮説!〜
electricsatie
1
160
AWSで推進するデータマネジメント
kawanago
0
990
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.3k
シークレット管理だけじゃない!HashiCorp Vault でデータ暗号化をしよう / Beyond Secret Management! Let's Encrypt Data with HashiCorp Vault
nnstt1
3
210
生成AI時代のデータ基盤
shibuiwilliam
5
3.4k
ガチな登山用デバイスからこんにちは
halka
1
210
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
120
バッチ処理で悩むバックエンドエンジニアに捧げるAWS Glue入門
diggymo
3
110
クラウドセキュリティを支える技術と運用の最前線 / Cutting-edge Technologies and Operations Supporting Cloud Security
yuj1osm
2
270
Featured
See All Featured
The Language of Interfaces
destraynor
160
25k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Rails Girls Zürich Keynote
gr2m
95
14k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
11
1.1k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Designing for Performance
lara
610
69k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
4 Signs Your Business is Dying
shpigford
184
22k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
Copyright © RevComm Inc. LoRAによるメモリ使用量削減の検証 Akihiro Katsuta Works Applications Co.,Ltd
Masaki Ono RevComm Inc.
Copyright © RevComm Inc. LoRA: Low-Rank Adaptation of Large Language
Models Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang ,Weizhu Chen https://arxiv.org/abs/2106.09685 LoRAとは • 再学習するベースモデルのパラメータを固定し、fine-tuning用に学習可能な階数分解行列(rank decomposition matrices)をモデルに挿入 • モデルのパラメータを更新する従来のfine-tuningと比較して ◦ 更新するパラメータ数を削減し、GPU要件を下げられる ◦ 差分のみ保存すればよく、ストレージ要件も下げられる ◦ かつ、同等の精度を出せる 2
Copyright © RevComm Inc. その他のメモリ削減 • Mixed Precision (FP16) ◦
学習は32ビット浮動小数点演算(FP32)を使っているが、代替可能な部分を16ビットの低精度 dtypeに変更することでメモリや計算時間を削減 ◦ しかし、若干の性能低下がネック • Model Quantization (INT8) ◦ ディープラーニングの最適化手法の一つで浮動小数点を8ビットの整数に変換 ◦ 性能を維持しつつメモリの削減が可能 peftを使った導入もさほど難しくない 3
Copyright © RevComm Inc. 計算資源の選定基準 今回の実験で使う環境 • AWS G5.xlarge ◦
RAM: 16GB ◦ GPU: NVIDIA A10G(24GB) 流行りのChatGPTと比べてG5.xlargeで実験を完結できている分にはコスパが良さそう • ChatGPT: 520K [token/$(USD)]、 • G5.xlarge 日本語T5 model (1GB): 5000K [token/$(USD)] 4
Copyright © RevComm Inc. • 学習・評価データセット:SAMSum Corpus ◦ 対話の抽象型要約データセット •
学習モデル:flan-t5 ◦ base (約 1GB, 250M param) ◦ large (約 3 GB, 780M param) ◦ xl (約 11.5 GB, 3B param) • 学習時間やメモリ使用量を測るため、ハイパラは以下で固定 ◦ epoch: 3 ◦ train batch: 8 ◦ = (train step: 5526) 実験設定 5
Copyright © RevComm Inc. • flan-t5-baseのFine-TuningとLoRAを比較して、精度はほとんど変わらずGPUメモリ が約2割まで減らせている • LoRAとfp16やint8を組み合わせるとよりメモリ効率が上がる •
LoRAを使うことで24GBのGPUでもxlサイズのモデルまで学習できる メモリ使用量削減の検証 言語モデル ROUGE-1(↑) ROUGE-2(↑) 学習時間 GPU Memory CPU Memory flan-t5-base-FT 51.3911 26.7651 40.27 min 14830 MB 4873 MB flan-t5-base-LoRA 51.6928 27.0978 49.11 min 3298 MB 4781 MB flan-t5-large-LoRA 53.8242 28.7078 139.36 min 6175 MB 3036 MB flan-t5-xl-LoRA 54.3119 30.1148 350.24 min 15491 MB 5943 MB flan-t5-xl-LoRA-fp16 53.8726 29.7212 224.69 min 10861 MB 8142 MB flan-t5-xl-LoRA-int8 54.6110 30.3880 331.53 min 9251 MB 8296 MB 6
Copyright © RevComm Inc. LoRAのr(次元)を4,8,16でそれぞれ15epoch程学習をさせ、その傾向を比較 • rが小さい方がこのタスクでは過学習が抑えられるためか良さそう 付録: LoRAのハイパラ r=4
r=16 r=8 r=8 r=4 r=16 r=4 r=8 r=16 7
Copyright © RevComm Inc. • GPUメモリ使用量の削減としてLoRAなどの検証を行った • LoRA + int8などを組み合わせることでよりGPUメモリ要件を下げられる
• 所感として導入も楽でこれだけ削減できるのでかなり使い勝手は良いように思う まとめ 8
Copyright © RevComm Inc. Thank you!