Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Riak Query Tale
Search
Mathias Meyer
February 01, 2012
Programming
5
1k
A Riak Query Tale
An introduction to the abundance of ways you can get data out of Riak.
Mathias Meyer
February 01, 2012
Tweet
Share
More Decks by Mathias Meyer
See All by Mathias Meyer
Building and Scaling an Distributed and Inclusive Team
roidrage
0
1.4k
cooking infrastructure with chef
roidrage
4
240
The Message Queue is Dead, Long Live the Message Queue
roidrage
4
710
riak-js
roidrage
1
290
designing for concurrency with riak
roidrage
11
1.9k
metrics, monitoring, logging
roidrage
82
15k
design for cloud - jax 2012
roidrage
2
310
Don't Use NoSQL
roidrage
10
1.1k
Designing Applications for Amazon Web Services (GOTO Aarhus)
roidrage
6
370
Other Decks in Programming
See All in Programming
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
180
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Package Management Learnings from Homebrew
mikemcquaid
0
210
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
SourceGeneratorのススメ
htkym
0
190
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
260
Featured
See All Featured
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
180
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
Building Applications with DynamoDB
mza
96
6.9k
Statistics for Hackers
jakevdp
799
230k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Producing Creativity
orderedlist
PRO
348
40k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Transcript
A Riak Query Tale Mathias Meyer, @roidrage NoSQL Cologne
http://riakhandbook.com
Riak Distributed Database Fault-Tolerant Content-Agnostic Scalable on Demand
Querying Data
Key-Value $ curl localhost:8098/riak/users/roidrage
Links $ curl -‐v localhost:8098/riak/users/roidrage < HTTP/1.1 200 OK <
Link: </riak/users/klimpong>; riaktag="friend"
Links $ curl .../riak/users/roidrage/users,friend,_/
Listing Keys $ curl .../riak/users?keys=true
Don’t do that!
Streaming Keys $ curl .../riak/users?keys=stream
Avoid that!
Loads all the keys.
MapReduce
MapReduce Transform (Map) Aggregate (Reduce)
Warning: JavaScript
MapReduce riak.add("users"). map("Riak.mapValues").
run()
MapReduce var nameLength = function(value) { var doc
= Riak.mapValues(value)[0]; return [doc.length]; }
MapReduce riak.add("users"). map(nameLength).
run()
MapReduce riak.add("users"). map(nameLength).
reduce("Riak.reduceSum"). run()
MapReduce var average = function(values) { var avg
= values.reduce(function(n, sum) { return sum += n; }, 0); return [(avg / values.length)]; }
MapReduce riak.add("users"). map(nameLength).
reduce(average). run()
MapReduce riak.add("users"). map(nameLength).
reduce(average). run() Uh-Oh!
MapReduce riak.add(["users", "roidrage"]). map(nameLength).
reduce(average). run() Better!
JavaScript M/R Breaks with Millions of Objects Uses External Libraries
Serializes Data for JavaScript
Warning: Erlang
MapReduce riak.add('tweets'). map({language: 'erlang',
module: 'riak_kv_mapreduce', function: 'map_object_value'}).run()
MapReduce $ riak attach > {ok, C} = riak:local_client().
MapReduce C:mapred([{<<"users">>, <<"roidrage">>}], [{map, {modfun, riak_kv_mapreduce, map_object_value}, none, false}, {reduce,
{modfun, riak_kv_mapreduce, reduce_count_inputs}, none, true}]).
MapReduce ExtractFirstName1 = fun(RObject, _, _) -‐>
Value = riak_object:get_value(RObject), [FirstName, _] = re:split(Value, " "), [FirstName] end.
MapReduce C:mapred([{<<"users">>, <<"roidrage">>}],
[{map, {qfun, ExtractFirstName}, none, true}]).
Erlang M/R Much more efficient than JavaScript No serialization No
ad-hoc functions through HTTP
Key-Filters Reduce MapReduce input Based on key matches
Key-Filters riak.add({bucket: 'users', key_filters: [["matches", "^roid"]]})
Key-Filters riak.add({bucket: 'users', key_filters: [["to_upper"],
["matches", "^ROID"]]})
Key-Filters riak.add({bucket: 'users', key_filters: [["to_upper"],
["to_lower"], ["matches", "^roid"]]})
Key-Filters riak.add({bucket: 'users', key_filters: [["to_upper"],
["ends_with", "RAGE"]]})
Key-Filters riak.add({bucket: 'users', key_filters:
[["and", [["string_to_int"], ["less_than", 10]], [["string_to_int"], ["greater_than", 5]]]]})
Don't use key filters.
Riak 2i Sorted Secondary Indexes Simple Reverse Lookups Maintained Manually
Requires LevelDB
Riak 2i curl -‐X PUT .../riak/users/roidrage -‐d @-‐ \
-‐H "Content-‐Type: text/plain" \ -‐H "X-‐Riak-‐Index-‐firstname_bin: mathias" \ -‐H "X-‐Riak-‐Index-‐lastname_bin: meyer"
Riak 2i X-‐Riak-‐Index-‐firstname_bin: Mathias X-‐Riak-‐Index-‐lastname_bin: Meyer
Riak 2i X-‐Riak-‐Index-‐firstname_bin: Mathias X-‐Riak-‐Index-‐lastname_bin: Meyer X-‐Riak-‐Index-‐age_int: 34
Riak 2i X-‐Riak-‐Index-‐firstname_bin: Mathias X-‐Riak-‐Index-‐lastname_bin: Meyer X-‐Riak-‐Index-‐age_int: 34 X-‐Riak-‐Index-‐topics_bin: nosql,cloud,operations
Riak 2i # Match $ curl .../buckets/users/index/firstname_bin/Mathias
Riak 2i # Range $ curl .../buckets/users/index/firstname_bin/Mathias/Till
Riak 2i # Key $ curl .../buckets/users/index/$key/roidrage
Ordered Keys! (sort of)
MapReduce riak.add({bucket: 'users',
index: 'lastname_bin', key: 'mathias'}). map('Riak.mapValuesJson').run()
Riak 2i No Multi-Index Queries Requires Extra Work in the
App Returns only keys Document-partitioned
Riak Search Full-Text Search Solr-ish Interface Integrates with Riak
Riak Search curl -‐X PUT localhost:8098/riak/users -‐d @-‐ \
-‐H "Content-‐Type: application/json" {"props":{"precommit": [{"mod":"riak_search_kv_hook","fun":"precommit"} ]}}
Indexing Riak Objects curl -‐X PUT .../riak/users/roidrage \
-‐d "Mathias Meyer" -‐H "Content-‐Type: text/plain"
Solr-ish Interface curl .../solr/users/select?q=value:Mathias
Riak Search value:Mathias OR value:Till value:Mathias AND value:Meyer value:Mat* value:[Mathias
TO Till]
MapReduce riak.addSearch("users", "value:Mathias"). map("Riak.mapValues").run()
Riak Search Full text search of structured data Term-partitioned Efficient
for one term queries Multiple Interfaces No Anti-Entropy
When?
Key Listings Never! Almost
MapReduce Analytical Queries Fixed Dataset
Key Filters Never!
Riak 2i Simple Lookups and Range Queries Unbounded Queries Full
Fault-Tolerance
Riak Search Larger documents Full indexing Flexible queries Low frequency
terms
Questions?