Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Big data and Machine learning APIs
Search
Sam Bessalah
December 03, 2014
Technology
4
250
Big data and Machine learning APIs
Sam Bessalah
December 03, 2014
Tweet
Share
More Decks by Sam Bessalah
See All by Sam Bessalah
Streaming Platforms
samklr
0
340
Intro to Parquet (June 2015)
samklr
0
270
High Performance RPC with Finagle
samklr
1
160
Dotscale 2015 Lightning - Distributed Systems Research
samklr
1
780
Datageeks_27-05.pdf
samklr
0
49
Scalable Machine Learning
samklr
2
210
mesos.devoxx.2014
samklr
2
240
Algebird : Abstract Algebra for Big Data Analytics.
samklr
9
2.8k
Algebra for analytics
samklr
1
270
Other Decks in Technology
See All in Technology
プロセス改善による品質向上事例
tomasagi
1
1.6k
第13回 Data-Centric AI勉強会, 画像認識におけるData-centric AI
ksaito_osx
0
360
Nekko Cloud、 これまでとこれから ~学生サークルが作る、 小さなクラウド
logica0419
2
730
サーバーレスアーキテクチャと生成AIの融合 / Serverless Meets Generative AI
_kensh
12
3k
リーダブルテストコード 〜メンテナンスしやすい テストコードを作成する方法を考える〜 #DevSumi #DevSumiB / Readable test code
nihonbuson
11
5.8k
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
15
5.5k
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
460
Tech Blogを書きやすい環境づくり
lycorptech_jp
PRO
0
120
モノレポ開発のエラー、誰が見る?Datadog で実現する適切なトリアージとエスカレーション
biwashi
6
770
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
1.5k
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.2k
滅・サービスクラス🔥 / Destruction Service Class
sinsoku
6
1.5k
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Typedesign – Prime Four
hannesfritz
40
2.5k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Visualization
eitanlees
146
15k
KATA
mclloyd
29
14k
Done Done
chrislema
182
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
For a Future-Friendly Web
brad_frost
176
9.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
20
2.4k
The Language of Interfaces
destraynor
156
24k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Transcript
Big Data and Machine Learning APIs
Sam Bessalah @samklr Software Engineer, Freelance Data Engineering, Distributed systems,
Machine Learning Paris Data Geek Meetup @DataParis me :
None
None
None
Big Data Legends ….
Big Data Legends … Web logs Sensors Other Data source
.. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . . Data Driven Decisions Smart Applications
BUT ….
- Building big data infrastructures is no easy task. -
Leveraging data for decision making requires a mix of multiples skills : . System Engineering . Distributed computing . Statistics . Machine Learning
Solutions …. - Build Data platforms as a service. -
Build robust and consistent APIs to bring big data to the masses. - Leverages fluent APIs for fast data science
None
Big Data is not just about throwing data to Hadoop.
It’s also about data pipelines
Data Sources
Data Sources
Data Sources - High Throughput distributed mssaging platform - Publish
Subscribe Model - Modelled as a distributed replicated log - Persists messages to disk - Categorizes messages into Topics - Allows message retention for long specified amount of time - Allows stream replay in case of failure
Data Sources Machine Learning High Latency Batch Apps Real Time
Processing
How do you build an API around that?
None
/ingest REST API
/ingest
/ingest /query /trainModel /process
Things to be careful with - Multitenancy (Yarn, Mesos, Docker…)
- Job Scheduling - Security - Serialisation : ProtoBuf, Thrift, Avro - Storage Format : Optimize queries with columnar storage. - Compression : LZO, Snappy
Making sense of data …
None
What is Machine Learning?
http://dilbert.com/strips/comic/2013-02-02
None
https://speakerdeck.com/nivdul/lightning-fast-machine-learning-with-spark-1
Machine Learning workflow
Machine Learning workflow Text, Images, etc
Machine Learning workflow Text, Images, etc Feature Extraction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model New Data Feature Vector Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning Libraries and Frameworks
scikit-learn.org
Text, Images, etc Feature Extraction Predictive Model New Data Prediction
X = vect.fit_transform(input) clf.fit(X,y) X_new = vect.fit_transform(input) y_new= clf.predict(X_new)
http://arxiv.org/abs/1309.0238
From library to web APIs
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning workflow Text, Images, etc Transformed Data Application Prediction
Predictive API
Predictive Web APIs
Some examples
Challenges of Predictive APIs
http://www.r-bloggers.com/data-science-toolbox-survey-results-surprise-r-and-python-win/
Modeling and Prediction are just a small part of the
process
- Data locality and data gravity - Support the full
workflow - Verticalization of platforms - Scalability - Collaboration and interoperability - Black boxing of implementations
Explore machine learning for APIs orchestration. Talk to Ori @OriPekelman
Next Frontier ? Or actual reality ?
None
http://speakerdeck.com/samklr