Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Big data and Machine learning APIs
Search
Sam Bessalah
December 03, 2014
Technology
4
260
Big data and Machine learning APIs
Sam Bessalah
December 03, 2014
Tweet
Share
More Decks by Sam Bessalah
See All by Sam Bessalah
Streaming Platforms
samklr
0
350
Intro to Parquet (June 2015)
samklr
0
280
High Performance RPC with Finagle
samklr
1
180
Dotscale 2015 Lightning - Distributed Systems Research
samklr
1
790
Datageeks_27-05.pdf
samklr
0
53
Scalable Machine Learning
samklr
2
230
mesos.devoxx.2014
samklr
2
250
Algebird : Abstract Algebra for Big Data Analytics.
samklr
9
2.9k
Algebra for analytics
samklr
1
280
Other Decks in Technology
See All in Technology
本当にわかりやすいAIエージェント入門
segavvy
8
4.4k
スプリントゴール未達症候群に送る処方箋
kakehashi
PRO
1
130
TROCCO今昔
gtnao
0
130
DATA+AI SummitとSnowflake Summit: ユーザから見た共通点と相違点 / DATA+AI Summit and Snowflake Summit
nttcom
0
100
CDKコード品質UP!ナイスな自作コンストラクタを作るための便利インターフェース
harukasakihara
2
250
毎晩の 負荷試験自動実行による効果
recruitengineers
PRO
5
190
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
240
RapidPen: AIエージェントによる高度なペネトレーションテスト自動化の研究開発
laysakura
1
310
地図と生成AI
nakasho
0
390
ABEMAの本番環境負荷試験への挑戦
mk2taiga
5
1.5k
低レイヤソフトウェア技術者が YouTuberとして食っていこうとした話
sat
PRO
6
5.7k
LLM拡張解体新書/llm-extension-deep-dive
oracle4engineer
PRO
26
7.3k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Designing for humans not robots
tammielis
253
25k
KATA
mclloyd
30
14k
How to Ace a Technical Interview
jacobian
278
23k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
YesSQL, Process and Tooling at Scale
rocio
173
14k
We Have a Design System, Now What?
morganepeng
53
7.7k
How STYLIGHT went responsive
nonsquared
100
5.6k
Transcript
Big Data and Machine Learning APIs
Sam Bessalah @samklr Software Engineer, Freelance Data Engineering, Distributed systems,
Machine Learning Paris Data Geek Meetup @DataParis me :
None
None
None
Big Data Legends ….
Big Data Legends … Web logs Sensors Other Data source
.. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . . Data Driven Decisions Smart Applications
BUT ….
- Building big data infrastructures is no easy task. -
Leveraging data for decision making requires a mix of multiples skills : . System Engineering . Distributed computing . Statistics . Machine Learning
Solutions …. - Build Data platforms as a service. -
Build robust and consistent APIs to bring big data to the masses. - Leverages fluent APIs for fast data science
None
Big Data is not just about throwing data to Hadoop.
It’s also about data pipelines
Data Sources
Data Sources
Data Sources - High Throughput distributed mssaging platform - Publish
Subscribe Model - Modelled as a distributed replicated log - Persists messages to disk - Categorizes messages into Topics - Allows message retention for long specified amount of time - Allows stream replay in case of failure
Data Sources Machine Learning High Latency Batch Apps Real Time
Processing
How do you build an API around that?
None
/ingest REST API
/ingest
/ingest /query /trainModel /process
Things to be careful with - Multitenancy (Yarn, Mesos, Docker…)
- Job Scheduling - Security - Serialisation : ProtoBuf, Thrift, Avro - Storage Format : Optimize queries with columnar storage. - Compression : LZO, Snappy
Making sense of data …
None
What is Machine Learning?
http://dilbert.com/strips/comic/2013-02-02
None
https://speakerdeck.com/nivdul/lightning-fast-machine-learning-with-spark-1
Machine Learning workflow
Machine Learning workflow Text, Images, etc
Machine Learning workflow Text, Images, etc Feature Extraction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model New Data Feature Vector Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning Libraries and Frameworks
scikit-learn.org
Text, Images, etc Feature Extraction Predictive Model New Data Prediction
X = vect.fit_transform(input) clf.fit(X,y) X_new = vect.fit_transform(input) y_new= clf.predict(X_new)
http://arxiv.org/abs/1309.0238
From library to web APIs
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning workflow Text, Images, etc Transformed Data Application Prediction
Predictive API
Predictive Web APIs
Some examples
Challenges of Predictive APIs
http://www.r-bloggers.com/data-science-toolbox-survey-results-surprise-r-and-python-win/
Modeling and Prediction are just a small part of the
process
- Data locality and data gravity - Support the full
workflow - Verticalization of platforms - Scalability - Collaboration and interoperability - Black boxing of implementations
Explore machine learning for APIs orchestration. Talk to Ori @OriPekelman
Next Frontier ? Or actual reality ?
None
http://speakerdeck.com/samklr