$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Big data and Machine learning APIs
Search
Sam Bessalah
December 03, 2014
Technology
4
270
Big data and Machine learning APIs
Sam Bessalah
December 03, 2014
Tweet
Share
More Decks by Sam Bessalah
See All by Sam Bessalah
Streaming Platforms
samklr
0
360
Intro to Parquet (June 2015)
samklr
0
300
High Performance RPC with Finagle
samklr
1
200
Dotscale 2015 Lightning - Distributed Systems Research
samklr
1
810
Datageeks_27-05.pdf
samklr
0
57
Scalable Machine Learning
samklr
2
240
mesos.devoxx.2014
samklr
2
270
Algebird : Abstract Algebra for Big Data Analytics.
samklr
9
2.9k
Algebra for analytics
samklr
1
300
Other Decks in Technology
See All in Technology
[JAWS-UG 横浜支部 #91]DevOps Agent vs CloudWatch Investigations -比較と実践-
sh_fk2
1
230
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
550
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
640
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
240
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
1
130
乗りこなせAI駆動開発の波
eltociear
1
800
Noを伝える技術2025: 爆速合意形成のためのNICOフレームワーク速習 #pmconf2025
aki_iinuma
2
1.9k
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
0
170
HIG学習用スライド
yuukiw00w
0
110
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
100
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
0
140
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
10
6.4k
Featured
See All Featured
Speed Design
sergeychernyshev
33
1.4k
Docker and Python
trallard
47
3.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
It's Worth the Effort
3n
187
29k
Writing Fast Ruby
sferik
630
62k
Fireside Chat
paigeccino
41
3.7k
For a Future-Friendly Web
brad_frost
180
10k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
The Invisible Side of Design
smashingmag
302
51k
Mobile First: as difficult as doing things right
swwweet
225
10k
Transcript
Big Data and Machine Learning APIs
Sam Bessalah @samklr Software Engineer, Freelance Data Engineering, Distributed systems,
Machine Learning Paris Data Geek Meetup @DataParis me :
None
None
None
Big Data Legends ….
Big Data Legends … Web logs Sensors Other Data source
.. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . .
A Big Data Legend … Web logs Sensors Other Data
sources .. . . . Data Driven Decisions Smart Applications
BUT ….
- Building big data infrastructures is no easy task. -
Leveraging data for decision making requires a mix of multiples skills : . System Engineering . Distributed computing . Statistics . Machine Learning
Solutions …. - Build Data platforms as a service. -
Build robust and consistent APIs to bring big data to the masses. - Leverages fluent APIs for fast data science
None
Big Data is not just about throwing data to Hadoop.
It’s also about data pipelines
Data Sources
Data Sources
Data Sources - High Throughput distributed mssaging platform - Publish
Subscribe Model - Modelled as a distributed replicated log - Persists messages to disk - Categorizes messages into Topics - Allows message retention for long specified amount of time - Allows stream replay in case of failure
Data Sources Machine Learning High Latency Batch Apps Real Time
Processing
How do you build an API around that?
None
/ingest REST API
/ingest
/ingest /query /trainModel /process
Things to be careful with - Multitenancy (Yarn, Mesos, Docker…)
- Job Scheduling - Security - Serialisation : ProtoBuf, Thrift, Avro - Storage Format : Optimize queries with columnar storage. - Compression : LZO, Snappy
Making sense of data …
None
What is Machine Learning?
http://dilbert.com/strips/comic/2013-02-02
None
https://speakerdeck.com/nivdul/lightning-fast-machine-learning-with-spark-1
Machine Learning workflow
Machine Learning workflow Text, Images, etc
Machine Learning workflow Text, Images, etc Feature Extraction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Training Predictive Model New Data Feature Vector Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning Libraries and Frameworks
scikit-learn.org
Text, Images, etc Feature Extraction Predictive Model New Data Prediction
X = vect.fit_transform(input) clf.fit(X,y) X_new = vect.fit_transform(input) y_new= clf.predict(X_new)
http://arxiv.org/abs/1309.0238
From library to web APIs
Machine Learning workflow Text, Images, etc Feature Extraction Learning algorithm
Predictive Model New Data Prediction BLACK BOX
Machine Learning workflow Text, Images, etc Transformed Data Application Prediction
Predictive API
Predictive Web APIs
Some examples
Challenges of Predictive APIs
http://www.r-bloggers.com/data-science-toolbox-survey-results-surprise-r-and-python-win/
Modeling and Prediction are just a small part of the
process
- Data locality and data gravity - Support the full
workflow - Verticalization of platforms - Scalability - Collaboration and interoperability - Black boxing of implementations
Explore machine learning for APIs orchestration. Talk to Ori @OriPekelman
Next Frontier ? Or actual reality ?
None
http://speakerdeck.com/samklr