Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Text Style Transfer Overview

Text Style Transfer Overview

Scatter Lab Inc.

January 23, 2020
Tweet

More Decks by Scatter Lab Inc.

Other Decks in Research

Transcript

  1. ݾର ݾର! 1. ޙઁ ࣗѐ : যڃ ޙઁܳ ಽ۰Ҋ ೡөਃ?

    2. ޙઁ ࢸ੿ : ؘ੉ఠࣇ / పझ௼ / Single vs Multi-Attribute 3. ಣо ߑߨ : Style Transfer Degree, Content Preservation, Naturalness 4. ݽ؛ : Disentanglement vs Entanglement
  2. Style Transfer ঌইࠁӝ ޙઁ ੿੄ ޙ੢ীࢲ झఋੌ੉ۄח Ѫ਷ ޖ঺ੌөਃ? ৘द)

    • ޙ੢੄ ӛ੿, ࠗ੿ • ޙয୓, ҳয୓, ࢿ҃୓(?) • যൃ ࢶఖ (য۰਍ ਊয, ए਍ ਊয) • ݈ై (যܲझ۞਍ ݈ై, গੋՙܻ੄ ݈ై)
  3. Style Transfer ঌইࠁӝ ޙઁ ੿੄ Text style transfer is the

    task of transferring the style of text having certain stylistic attributes, while preserving non-stylistic or content information - Papers With Code ੑ۱ ޙ੢ਸ ౠ੿ झఋੌਸ ನೣೠ ޙ੢ਵ۽ ߸҃ೞח ޙઁੑפ׮. ױ, ߸҃दী ޙ੢੄ ஶబஎ ژח ޙ୓җ ҙ۲ হח ੿ࠁٜਸ ࠁઓ೧ঠ ೤פ׮ • ৘) ӛ੿੸ੋ ܻ࠭ -> ࠗ੿੸ੋ ܻ࠭ Text Style Transfer ۆ ޖ঺ੌөਃ?
  4. Style Transfer ঌইࠁӝ ޙઁ ੿੄ • Low Resource : Supervised

    Learning ਵ۽ ಽӝীח Parallel ؘ੉ఠо ࠗ઒ೣ • (ੑ۱-߸ചػ ޙ੢) हਸ ٜ݅ӝ য۵Ҋ, ݅ٚ׮Ҋ ೞ؊ۄب ࢎۈ݃׮ ઱ҙ੸੐ - Evaluation: ݺഛೠ ੿׹ਸ ੿੄ೞӝ য۵Ҋ, ࢎۈ੄ ಣо৬ োҙࢿ੉ ֫਷ ૑಴ܳ ࢸ੿ೞӝ য۰਑. - Content Preservation: ޙ੢੄ झఋੌ੉ ߄Շݶࢲ ӝઓ੄ ஶబஎо ߸ഋغয ߡܻח ޙઁо ੓਺ - ੿੄੄ ݽഐࢿ : झఋੌ੉ۄח Ѫਸ ݺഛೞѱ ੿੄ೞӝ য۵ӝ ٸޙী, ಽযঠೡ ޙઁо ݽഐೣ ੉ పझ௼ীࢲ ೧Ѿ೧ঠ ೡ ޙઁ
  5. Style Transfer ঌইࠁӝ YELP Review Dataset - Positive(266,041), Negative (177,218)

    https://www.yelp.com/dataset Amazone Review Dataset - Positive(64,251,073), Negative (10,944,310) Single Attribute п ܻ࠭ী ؀ೠ ӛ/ࠗ੿੉ ۨ੉࠶݂ غয ੓ח ؘ੉ఠࣇ IMDb - Positive(178,869), Negative (187,597)
  6. Style Transfer ঌইࠁӝ FYELP (Multi-Attribute) YELP ؘ੉ఠࣇী Gender, Category Attribute

    ܳ ୶оೠ ؘ੉ఠࣇ (MULTIPLE-ATTRIBUTE TEXT REWRITING, ICLR 2019)
  7. Style Transfer ঌইࠁӝ Empathetic Dialog Dataset (Multi-Attribute) ೧׼ ؀ച੄ х੿੉

    ۨ੉࠶݂ غয੓ח ؘ੉ఠࣇ. х੿ -> ׮ܲ х੿ਵ۽ ߸ചदఃח ਊب۽ ࢎਊ оמೣ 
 (Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset, ACL 2018) (Zero-Shot Fine-Grained Style Transfer, arxiv 2019)
  8. Style Transfer ঌইࠁӝ Transfer ػ ޙ੢੉ ݾ಴۽ ೞח झఋੌী ঴݃ա

    Ӕ੽ೠо? ఫझ౟੄ झఋੌਸ ߄Բח ӝࠄ੸ੋ ݾ಴о ׳ࢿ غ঻ח૑ ഛੋೞח ૑಴ Style Transfer Intensity ಣо ߑߨ - Style Classification (৘: Sentiment Classification) - Style Representation Similarity ৘: Ӓ ৔ച ѐԵ੨! (੉ ޙ੢੉ pos ੋо?) <- (input) Ӓ ৔ച ૓૞ ֢੨੉঻য, (target style) pos
  9. Style Transfer ঌইࠁӝ ӝઓ੄ ޙ੢ীࢲ ׸Ҋ ੓؍ ஶబஎܳ ୽࠙൤ ࠁઓ೮חо?

    Style Transferܳ ೞݶࢲ ޙ੢੄ ஶబஎо ࢚ࣚغѢա ߸ഋ غ঻ח૑ܳ ഛੋೞח ૑಴ Content Preservation (=Relevance) ಣо ߑߨ - BLEU, METEOR, Overlap - Representation Similarity - Sentence Matching Model ৘: Ӓ ৔ച ѐԵ੨! (੉ ޙ੢੉ inputҗ زੌೠ ஶబஎ?) <- (input) Ӓ ৔ച ૓૞ ֢੨੉঻য,
  10. Style Transfer ঌইࠁӝ Naturalness (=Fluency) ࢤࢿػ ੉ ޙ੢੉ ੗োझ۞਍ ޙ੢ੋо?

    যࣽ੉ ੜޅغযب content preservation, style transfer intensity ח ֫ਸ ࣻ ੓਺ ಣо ߑߨ - Language Model Perplexity - Adversarial Evaluation (੉ѱ ࢎۈ੉ ॵ ޙ੢ੌө ࠈ੉ ॵ ޙ੢ੌө?) ৘: Ե੨! Ӓ ৔ച, ޷ଢ଼ (੉ ޙ੢ ઁ؀۽ ࢤࢿ ⪟פ?) <- (input) Ӓ ৔ച ૓૞ ֢੨੉঻য,
  11. Style Transfer ঌইࠁӝ Tradeoff Evaluating Style Transfer for Text, 2019

    NAACL Style Transfer Intensity ৬ Content Preservation, Naturalness ח Tradeoffо ࢤӡ ࣻ ߆ী হ਺
  12. Disentanglement о ަө? VAE Latent Representation Content Style Disentangled VAE

    Latent Variable ਋ܻח Style ਸ Control ೞҊ र਷ؘ, Latent Representation ੉ Content ৬ Ԙৈ੓׮… ੉ ࢚క۽ ޥо Latent Representationܳ ߸ഋೠ׮ݶ contents ب ߸ഋؼ૑ ށۄ! ഒઙ?! Content ৬ Style р੄ Ү଱ਸ ୭ࣗചೞҊ, Style ݅ ઑ੘ೞ੗!
  13. Disentangled Representation Learning for Non-Parallel Text Style Transfer, ACL 2019

    Disentangled Representation Learning for Non-Parallel Text Style Transfer, ACL 2019 - VAE ীࢲ ݅ٚ Latent Variable ਸ Style җ Content Latent Repre ۽ ܻ࠙ೞҊ੗ ೞח Method - Style Repre ਸ ܻ࠙ೞӝ ਤ೧ࢲ Style-Classification, Content Repreܳ ਤ೧ࢲ CBOW objective - п Repreܳ ৮੹ ܻ࠙ೞӝ ਤ೧ࢲ п Term ী Adversarial Loss ܳ - ੉ۧѱ ܻ࠙ػ Styleҗ Content Repre concat ೧ࢲ Decoding. Style Repre ݅ ߄Լ ֍ਵݶ Style Transfer غח ਗې
  14. Disentangled Representation Learning for Non-Parallel Text Style Transfer, ACL 2019

    Disentangled Representation Learning for Non-Parallel Text Style Transfer, ACL 2019
  15. Disentanglement о ަө? VAE Latent Representation Content Style Disentangled VAE

    Latent Variable Ӕؘ ੉Ѣ ೧ࠁפӬ ل੉ ܻ࠙ೞӝ غѱ য۵׮…. ইפ ӒܻҊ গୡী ف ҕр੉ ৮߷ೞѱ ܻ࠙ؼ ࣻ ੓חо?!
  16. MULTIPLE-ATTRIBUTE TEXT REWRITING MULTIPLE-ATTRIBUTE TEXT REWRITING, ICLR 2019 - Style

    Latent Representation ਸ ܻ࠙ೞח ߑߨ (Disentanglement Method)੉ ਬബೞ૑ ޅೞ׮ח Ѫ ਸ प೷ਸ ా೧ ୊਺ ૐݺೠ ֤ޙ - Denoising auto-encoding ਸ ࢎਊ೧ࢲ Style Tokenਸ Masking ೞҊ ੉ܳ Style Condition੉ ઱য઎ਸ ٸ ೧׼ ష௾ਸ ݏ୶ח ޙઁ. - Style Token Classification ੉ ೙ਃ۽ೣ - Multiple Attribute ޙઁܳ ಽ঻਺ 
 х੿ -> ׮ܲ х੿, ৈࢿ -> թࢿ, ੻਷ -> ֢ੋ - ֤ޙী Figure о হ׮….
  17. Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial

    Learning Revision in Continuous Space: Fine-Grained Control of Text Style Transfer, AAAI 2019 - ICLR 2019੄ Ѿҗܳ ߄ఔਵ۽ ѐߊػ VAE ߑध੄ Disentanglement Method - ݽٚ ޙ੢੉ Continuous Space ী ੓׮Ҋ о੿ೞҊ झఋੌ੉ ߸҃ػ ޙ੢ਸ ଺ইࠁ੗! - ߸ചػ Style੄ Latent Variable ਸ ଺ӝ ਤ೧ Predictor ੄ Error Surface ীࢲ Gradient Discent ܳ ࢎਊ. ী۞о ୭ࣗച غח ನੋ౟о ਋ܻо ଺Ҋ੗ ೞח ޙ੢੉ۄҊ о੿ೞҊ ޙઁܳ ಽӝ - Predictor = VAE + Attribute Predictor + Content Preservation ೧Ѿਸ ਤ೧ CBOW بੑ
  18. Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial

    Learning Revision in Continuous Space: Fine-Grained Control of Text Style Transfer, AAAI 2019
  19. MULTIPLE-ATTRIBUTE TEXT REWRITING - AAAI 2019 ֤ޙҗ Entangled Latent Repre

    ܳ Gradient ߑधਵ۽ ࣻ੿ೠ׮ח ੽Ӕ ߑध੉ ਬࢎ - ೟णदীח VAE੄ reconstruction loss৬ attribute classifier ܳ ೟णೞب۾ ೤פ׮. - encoder ۽ ࢤࢿػ latent variable ਸ ҅ࣘ সؘ੉౟ ೞݶࢲ attribute classifier ৬੄ loss о ੌ੿ threshold ੉ೞо ؼ ٸ ө૑ ߈ࠂೞݴ latent variable ਸ ࣻ੿೤פ׮. Controllable Unsupervised Text Attribute Transfer 
 via Editing Entangled Latent Representation, NeurIPS 2019
  20. Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation,

    ACL 2019 Style Transformer: Unpaired Text Style Transfer 
 without Disentangled Latent Representation, ACL 2019 - Style Latent Representation ਸ ܻ࠙ೞ૑ ঋח ߑध (Entanglement ߑधਸ ࢎਊೣ) - Transformer ҳઑ੄ Encoder, Decoder ܳ ࢎਊೣ - Self-Transfer(1), Back-Translation(2), Style Discriminator(3) ܳ زदী ೟णೞח ҳઑ
  21. Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation,

    ACL 2019 Style Transformer: Unpaired Text Style Transfer 
 without Disentangled Latent Representation, ACL 2019
  22. Multiple Text Style Transfer by using Word-level Conditional Generative Adversarial

    Network with Two-Phase Training Multiple Text Style Transfer by using Word-level Conditional 
 Generative Adversarial Network with Two-Phase Training, EMNLP 2019 - Reconstruction(1), Back-Translation(2), Adversarial(3), Discriminator(4) ੄ Loss ܳ ݽف ࢎ ਊೞח ୨ ૘೤ - Generator ח GRU Decoder ੋؘ, Generation inputਵ۽ Style Condition ਸ ֍য઱ח ߑध ࢎਊ - Reconstruction, Transfer Phase ܳ ܻ࠙೧ࢲ ೟ण - Style Attribute ܳ Representation ਵ۽ ࢎਊೞӝ ٸ ޙী Multi-Attribute ਸ ૑ਗೣ
  23. Multiple Text Style Transfer by using Word-level Conditional Generative Adversarial

    Network with Two-Phase Training Multiple Text Style Transfer by using Word-level Conditional 
 Generative Adversarial Network with Two-Phase Training, EMNLP 2019
  24. - ؘ੉ఠח Sentiment Binary о ؀ࠗ࠙, Multi-Attribute ա Dialog ؘ੉ఠо

    աয়ח ୶ࣁ - ಣо ӝળ਷ Style Intensity, Content Preservation, Naturalness о ݫੋ ܙ - Disentangled ࠁ׮ Entangled ߑध੉ જ׮. ׮݅ Entangled ৉द ೟णदఃӝח ࡆࣁ׮. - ਃ્ ؀ࠗ࠙੄ ֤ޙٜ਷ Multi-Attribute ח ӝࠄ ২࣌ - image style transfer ীࢲ ࢎਊ೮؍ GANਸ ӝ߈ਵ۽ ೞח ߑߨٜ੉ ੼੼ ఫझ౟ীب ੸ਊغ۰Ҋ ೞҊ ੓׮. - ԙ Fine-Grained Attribute о ইפ؊ۄب Style Transfer ח оמೞ׮. ׮݅ ୽࠙ೠ ࢿמ੉ ࠁ੢غ૓ ঋח׮. ݃ޖਵܻ ਃড
  25. хࢎ೤פ׮✌ ୶о ૕ޙ ژח ҾӘೠ ੼੉ ੓׮ݶ ঱ઁٚ ইې োۅ୊۽

    োۅ ઱ࣁਃ! ӣળࢿ (ML Research Scientist) [email protected] Facebook. @pingpong