Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study...
Search
Shinichi Nakagawa
PRO
December 17, 2020
Research
0
3.1k
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study 2020 Winter
Baseball Play Study 2020冬 LT資料
https://bpstudy.connpass.com/event/197652/
Shinichi Nakagawa
PRO
December 17, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
270
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
520
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
4.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
2025-11-21-DA-10th-satellite
yegusa
0
110
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
890
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
R&Dチームを起ち上げる
shibuiwilliam
1
160
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
490
Featured
See All Featured
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
My Coaching Mixtape
mlcsv
0
48
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
53
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
From π to Pie charts
rasagy
0
120
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Mobile First: as difficult as doing things right
swwweet
225
10k
Transcript
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ 2020/12/17 Shinichi
Nakagawa(@shinyorke)
ϫΠʮઌಉ͡ΛଞॴͰͨ͠Α͏ͳʯ
͋ͬʢ͠ʣ ༵ʹʮSports Analyst Meetup #9ʯͰLTͪ͠Όͬͯ·ͨ͠ https://speakerdeck.com/shinyorke/hayato-sakamoto-performance-prediction-using-feature-engineering-with-machine-learning-and-python
ʲ݁ʳࡔຊ༐ਓબखͷ༧ଌ 39ࡀͷγʔζϯ, ͖ͬͱΈΜͳʹॕ͞ΕΔͰ͠ΐ͏
ʲ݁ʳࡔຊ͞Μ3,000҆ଧ39ࡀ ※2028γʔζϯ, ͋͘·ͰݟࠐΈͰ͢
ΊͰͨ͠ΊͰͨ͠ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
͍͍, ͜ΕͰऴΘΕΜͩΖʢ͑ʣ
ͪΌΜͱωλ, ༻ҙͯ͠·͢
ॕɾࢁాਓ༷ϠΫϧτཹ ظܖظؒͷΛ AIʹ፻ͤ͞ฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ
2020/12/17 Shinichi Nakagawa(@shinyorke)
ຊͷςʔϚ • ϠΫϧτ͍ຊϓϩٿͷਓؒࠃๅͱݴͬͯաݴͰͳ͍ ࢁాਓબख͕ҰମͲΕ΄ͲͷΛࠓޙ͢ͷ͔͏ • ͿͬͪΌ͚ܖֹۚͷ׆༂͢Δͷ͔?͖ʹͳΔ • ͖͏AI͍ͥͬͯ͢͝Θ͔ͬͯ͘ΕͨΒخ͍͠ʢ͜ͳΈʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • ࣗশʮBaseball Play StudyͷϨδΣϯυʯ, ݩɾϓϩͷٿΤϯδχΞ • ࠷ۙ, 12ٿஂതѪओٛऀʹͳΓ·ͨ͠ʢ͕ݩւಓͳͷͰϋϜ͖ʹͳΔʣ.
ඵͰৼΓฦΔ2020ͷϓϩٿ • όϯςϦϯυʔϜφΰϠ, ര • ౦ژυʔϜબख, Ҡ੶ʢ༧ఆʣ • 26 -
4ʢ͠ʣ • ࢁాਓબख, 7૯ֹ40ԯԁʢਪఆʣͰϠΫϧτཹ
ࢁాਓ͞Μͷ740ԯԁͱ͔͍͏ܖ • เ5ԯԁʢʴΠϯηϯςΟϒʣ×7, Β͍͠. • ϑΝϯΈΜͳخ͍͠Ͱ͠ΐ͏, ϫΠخ͍͠Ͱ͢. • ͏ҰਓͷϫΠʮ40ԯԁͬͯݩ͕औΕΔΜΖ͔ʯ
…ͱ͍͏༁Ͱ, ٿAI͞Μʹฉ͍ͯΈ·ͨ͠.
ࠓճ͏͖͏ͷਓೳ PyCon JP 2020ͰͬͨʔͭΛͦͷ··͍·ͨ͠ʢ#spoana ͱಉ͡Ͱ͢ʣ. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ͻͱ·ͣ݁ՌΛ͓ݟͤ͠·͢.
ࢁాਓ༷ͷࠓޙ - ҆ଧɾຊྥଧɾଧ 150҆ଧͪΐ͍, 17ʙ19ຊྥଧΛՔ͗ͭͭ, 70ଧҎ্Ք͙
ࢁాਓ༷ͷࠓޙ - ଧ 32, 33ࡀ͋ͨΓͰಥવଧʹ֮Ίͯͯ໘ന͍݁Ռʹ
ࢁాਓ༷ͷࠓޙΛ·ͱΊΔͱ ͜ΕͰͣͬͱηΧϯυͬͯ͘ΕΔͳΒ͗͢͢͝Ͱ ͑?τϦϓϧεϦʔ??͏ʔʔΜ ྸ ଧ ҆ଧ ຊྥଧ ଧ ଧ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ 334ͪΌ͏Μ͔ʔ͍
ࢁాਓ༷2027ʢ34ʣ͕͢ه • ௨ࢉຊྥଧɾଧɾଧͰߴकಓࢯΛ͑Δ • ௨ࢉ2,236҆ଧͰ໊ٿձೖΓ·ͬͨͳ͠ • ໊࣮ͱʹϓϩٿ্࢙࠷ڧͷηΧϯυʹͳΔՄೳੑ
ͱ͍͑Ͱ͢Α • 7ܖதͷτϦϓϧεϦʔʢ3ׂ30ຊྥଧ30౪ྥʣଟແཧ • ਓೳ500ଧ੮Ҏ্Ք͙༧ଌΛ͍ͯ͠Δ͚Ͳ, ਓ༷Ҋ֎ނোͱ͔͋Δͷ͕ͪΐͬͱ৺ • ηΧϯυकඋෛ୲͕͔ͳΓ͋ΔϙδγϣϯͳͷͰ
ଧྗΛ׆͔ͨ͢Ίͷίϯόʔτ͋Δ͔͠Εͳ͍
݁ • ຊҰͷηΧϯυʹͳΓͦ͏ͳͷͰ740ԯͷܖଟଥ • ͱ͍͑େࣄʹͬͯཉ͍͠, ͋ΔҙຯਓؒࠃๅͰ͢͠ • ͘Ε͙ΕମʹؾΛ͚ͭͯؤுͬͯ΄͍͠ʂ
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)