$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study...
Search
Shinichi Nakagawa
PRO
December 17, 2020
Research
0
3k
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study 2020 Winter
Baseball Play Study 2020冬 LT資料
https://bpstudy.connpass.com/event/197652/
Shinichi Nakagawa
PRO
December 17, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
260
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
120
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.6k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.3k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
500
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.9k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
90k
Other Decks in Research
See All in Research
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.2k
説明可能な機械学習と数理最適化
kelicht
2
770
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
260
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
700
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
110
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
Featured
See All Featured
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
22
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
The Art of Programming - Codeland 2020
erikaheidi
56
14k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
Building the Perfect Custom Keyboard
takai
1
660
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
37
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
94
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
Transcript
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ 2020/12/17 Shinichi
Nakagawa(@shinyorke)
ϫΠʮઌಉ͡ΛଞॴͰͨ͠Α͏ͳʯ
͋ͬʢ͠ʣ ༵ʹʮSports Analyst Meetup #9ʯͰLTͪ͠Όͬͯ·ͨ͠ https://speakerdeck.com/shinyorke/hayato-sakamoto-performance-prediction-using-feature-engineering-with-machine-learning-and-python
ʲ݁ʳࡔຊ༐ਓબखͷ༧ଌ 39ࡀͷγʔζϯ, ͖ͬͱΈΜͳʹॕ͞ΕΔͰ͠ΐ͏
ʲ݁ʳࡔຊ͞Μ3,000҆ଧ39ࡀ ※2028γʔζϯ, ͋͘·ͰݟࠐΈͰ͢
ΊͰͨ͠ΊͰͨ͠ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
͍͍, ͜ΕͰऴΘΕΜͩΖʢ͑ʣ
ͪΌΜͱωλ, ༻ҙͯ͠·͢
ॕɾࢁాਓ༷ϠΫϧτཹ ظܖظؒͷΛ AIʹ፻ͤ͞ฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ
2020/12/17 Shinichi Nakagawa(@shinyorke)
ຊͷςʔϚ • ϠΫϧτ͍ຊϓϩٿͷਓؒࠃๅͱݴͬͯաݴͰͳ͍ ࢁాਓબख͕ҰମͲΕ΄ͲͷΛࠓޙ͢ͷ͔͏ • ͿͬͪΌ͚ܖֹۚͷ׆༂͢Δͷ͔?͖ʹͳΔ • ͖͏AI͍ͥͬͯ͢͝Θ͔ͬͯ͘ΕͨΒخ͍͠ʢ͜ͳΈʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • ࣗশʮBaseball Play StudyͷϨδΣϯυʯ, ݩɾϓϩͷٿΤϯδχΞ • ࠷ۙ, 12ٿஂതѪओٛऀʹͳΓ·ͨ͠ʢ͕ݩւಓͳͷͰϋϜ͖ʹͳΔʣ.
ඵͰৼΓฦΔ2020ͷϓϩٿ • όϯςϦϯυʔϜφΰϠ, ര • ౦ژυʔϜબख, Ҡ੶ʢ༧ఆʣ • 26 -
4ʢ͠ʣ • ࢁాਓબख, 7૯ֹ40ԯԁʢਪఆʣͰϠΫϧτཹ
ࢁాਓ͞Μͷ740ԯԁͱ͔͍͏ܖ • เ5ԯԁʢʴΠϯηϯςΟϒʣ×7, Β͍͠. • ϑΝϯΈΜͳخ͍͠Ͱ͠ΐ͏, ϫΠخ͍͠Ͱ͢. • ͏ҰਓͷϫΠʮ40ԯԁͬͯݩ͕औΕΔΜΖ͔ʯ
…ͱ͍͏༁Ͱ, ٿAI͞Μʹฉ͍ͯΈ·ͨ͠.
ࠓճ͏͖͏ͷਓೳ PyCon JP 2020ͰͬͨʔͭΛͦͷ··͍·ͨ͠ʢ#spoana ͱಉ͡Ͱ͢ʣ. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ͻͱ·ͣ݁ՌΛ͓ݟͤ͠·͢.
ࢁాਓ༷ͷࠓޙ - ҆ଧɾຊྥଧɾଧ 150҆ଧͪΐ͍, 17ʙ19ຊྥଧΛՔ͗ͭͭ, 70ଧҎ্Ք͙
ࢁాਓ༷ͷࠓޙ - ଧ 32, 33ࡀ͋ͨΓͰಥવଧʹ֮Ίͯͯ໘ന͍݁Ռʹ
ࢁాਓ༷ͷࠓޙΛ·ͱΊΔͱ ͜ΕͰͣͬͱηΧϯυͬͯ͘ΕΔͳΒ͗͢͢͝Ͱ ͑?τϦϓϧεϦʔ??͏ʔʔΜ ྸ ଧ ҆ଧ ຊྥଧ ଧ ଧ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ 334ͪΌ͏Μ͔ʔ͍
ࢁాਓ༷2027ʢ34ʣ͕͢ه • ௨ࢉຊྥଧɾଧɾଧͰߴकಓࢯΛ͑Δ • ௨ࢉ2,236҆ଧͰ໊ٿձೖΓ·ͬͨͳ͠ • ໊࣮ͱʹϓϩٿ্࢙࠷ڧͷηΧϯυʹͳΔՄೳੑ
ͱ͍͑Ͱ͢Α • 7ܖதͷτϦϓϧεϦʔʢ3ׂ30ຊྥଧ30౪ྥʣଟແཧ • ਓೳ500ଧ੮Ҏ্Ք͙༧ଌΛ͍ͯ͠Δ͚Ͳ, ਓ༷Ҋ֎ނোͱ͔͋Δͷ͕ͪΐͬͱ৺ • ηΧϯυकඋෛ୲͕͔ͳΓ͋ΔϙδγϣϯͳͷͰ
ଧྗΛ׆͔ͨ͢Ίͷίϯόʔτ͋Δ͔͠Εͳ͍
݁ • ຊҰͷηΧϯυʹͳΓͦ͏ͳͷͰ740ԯͷܖଟଥ • ͱ͍͑େࣄʹͬͯཉ͍͠, ͋ΔҙຯਓؒࠃๅͰ͢͠ • ͘Ε͙ΕମʹؾΛ͚ͭͯؤுͬͯ΄͍͠ʂ
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)