Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study...
Search
Shinichi Nakagawa
PRO
December 17, 2020
Research
0
3k
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study 2020 Winter
Baseball Play Study 2020冬 LT資料
https://bpstudy.connpass.com/event/197652/
Shinichi Nakagawa
PRO
December 17, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
410
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.2k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
82
85k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.9k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
520
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
Other Decks in Research
See All in Research
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
210
NLP Colloquium
junokim
1
150
言語モデルの内部機序:解析と解釈
eumesy
PRO
48
18k
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
420
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
810
NLP2025参加報告会 LT資料
hargon24
1
320
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
180
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
210
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
110
最適化と機械学習による問題解決
mickey_kubo
0
140
Combinatorial Search with Generators
kei18
0
310
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Become a Pro
speakerdeck
PRO
28
5.4k
Git: the NoSQL Database
bkeepers
PRO
430
65k
The Cult of Friendly URLs
andyhume
79
6.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Making Projects Easy
brettharned
116
6.3k
Designing for Performance
lara
609
69k
Speed Design
sergeychernyshev
32
1k
Transcript
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ 2020/12/17 Shinichi
Nakagawa(@shinyorke)
ϫΠʮઌಉ͡ΛଞॴͰͨ͠Α͏ͳʯ
͋ͬʢ͠ʣ ༵ʹʮSports Analyst Meetup #9ʯͰLTͪ͠Όͬͯ·ͨ͠ https://speakerdeck.com/shinyorke/hayato-sakamoto-performance-prediction-using-feature-engineering-with-machine-learning-and-python
ʲ݁ʳࡔຊ༐ਓબखͷ༧ଌ 39ࡀͷγʔζϯ, ͖ͬͱΈΜͳʹॕ͞ΕΔͰ͠ΐ͏
ʲ݁ʳࡔຊ͞Μ3,000҆ଧ39ࡀ ※2028γʔζϯ, ͋͘·ͰݟࠐΈͰ͢
ΊͰͨ͠ΊͰͨ͠ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
͍͍, ͜ΕͰऴΘΕΜͩΖʢ͑ʣ
ͪΌΜͱωλ, ༻ҙͯ͠·͢
ॕɾࢁాਓ༷ϠΫϧτཹ ظܖظؒͷΛ AIʹ፻ͤ͞ฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ
2020/12/17 Shinichi Nakagawa(@shinyorke)
ຊͷςʔϚ • ϠΫϧτ͍ຊϓϩٿͷਓؒࠃๅͱݴͬͯաݴͰͳ͍ ࢁాਓબख͕ҰମͲΕ΄ͲͷΛࠓޙ͢ͷ͔͏ • ͿͬͪΌ͚ܖֹۚͷ׆༂͢Δͷ͔?͖ʹͳΔ • ͖͏AI͍ͥͬͯ͢͝Θ͔ͬͯ͘ΕͨΒخ͍͠ʢ͜ͳΈʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • ࣗশʮBaseball Play StudyͷϨδΣϯυʯ, ݩɾϓϩͷٿΤϯδχΞ • ࠷ۙ, 12ٿஂതѪओٛऀʹͳΓ·ͨ͠ʢ͕ݩւಓͳͷͰϋϜ͖ʹͳΔʣ.
ඵͰৼΓฦΔ2020ͷϓϩٿ • όϯςϦϯυʔϜφΰϠ, ര • ౦ژυʔϜબख, Ҡ੶ʢ༧ఆʣ • 26 -
4ʢ͠ʣ • ࢁాਓબख, 7૯ֹ40ԯԁʢਪఆʣͰϠΫϧτཹ
ࢁాਓ͞Μͷ740ԯԁͱ͔͍͏ܖ • เ5ԯԁʢʴΠϯηϯςΟϒʣ×7, Β͍͠. • ϑΝϯΈΜͳخ͍͠Ͱ͠ΐ͏, ϫΠخ͍͠Ͱ͢. • ͏ҰਓͷϫΠʮ40ԯԁͬͯݩ͕औΕΔΜΖ͔ʯ
…ͱ͍͏༁Ͱ, ٿAI͞Μʹฉ͍ͯΈ·ͨ͠.
ࠓճ͏͖͏ͷਓೳ PyCon JP 2020ͰͬͨʔͭΛͦͷ··͍·ͨ͠ʢ#spoana ͱಉ͡Ͱ͢ʣ. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ͻͱ·ͣ݁ՌΛ͓ݟͤ͠·͢.
ࢁాਓ༷ͷࠓޙ - ҆ଧɾຊྥଧɾଧ 150҆ଧͪΐ͍, 17ʙ19ຊྥଧΛՔ͗ͭͭ, 70ଧҎ্Ք͙
ࢁాਓ༷ͷࠓޙ - ଧ 32, 33ࡀ͋ͨΓͰಥવଧʹ֮Ίͯͯ໘ന͍݁Ռʹ
ࢁాਓ༷ͷࠓޙΛ·ͱΊΔͱ ͜ΕͰͣͬͱηΧϯυͬͯ͘ΕΔͳΒ͗͢͢͝Ͱ ͑?τϦϓϧεϦʔ??͏ʔʔΜ ྸ ଧ ҆ଧ ຊྥଧ ଧ ଧ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ 334ͪΌ͏Μ͔ʔ͍
ࢁాਓ༷2027ʢ34ʣ͕͢ه • ௨ࢉຊྥଧɾଧɾଧͰߴकಓࢯΛ͑Δ • ௨ࢉ2,236҆ଧͰ໊ٿձೖΓ·ͬͨͳ͠ • ໊࣮ͱʹϓϩٿ্࢙࠷ڧͷηΧϯυʹͳΔՄೳੑ
ͱ͍͑Ͱ͢Α • 7ܖதͷτϦϓϧεϦʔʢ3ׂ30ຊྥଧ30౪ྥʣଟແཧ • ਓೳ500ଧ੮Ҏ্Ք͙༧ଌΛ͍ͯ͠Δ͚Ͳ, ਓ༷Ҋ֎ނোͱ͔͋Δͷ͕ͪΐͬͱ৺ • ηΧϯυकඋෛ୲͕͔ͳΓ͋ΔϙδγϣϯͳͷͰ
ଧྗΛ׆͔ͨ͢Ίͷίϯόʔτ͋Δ͔͠Εͳ͍
݁ • ຊҰͷηΧϯυʹͳΓͦ͏ͳͷͰ740ԯͷܖଟଥ • ͱ͍͑େࣄʹͬͯཉ͍͠, ͋ΔҙຯਓؒࠃๅͰ͢͠ • ͘Ε͙ΕମʹؾΛ͚ͭͯؤுͬͯ΄͍͠ʂ
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)