Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study...
Search
Shinichi Nakagawa
PRO
December 17, 2020
Research
0
3k
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study 2020 Winter
Baseball Play Study 2020冬 LT資料
https://bpstudy.connpass.com/event/197652/
Shinichi Nakagawa
PRO
December 17, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
110
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.1k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
5.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
480
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.6k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.4k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
88k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.5k
Other Decks in Research
See All in Research
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
530
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
660
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
550
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
300
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
960
Generative Models 2025
takahashihiroshi
25
14k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
0
100
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
670
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
130
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
270
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
840
IMC の細かすぎる話 2025
smly
2
710
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
A better future with KSS
kneath
239
18k
How GitHub (no longer) Works
holman
315
140k
For a Future-Friendly Web
brad_frost
180
10k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Building Adaptive Systems
keathley
44
2.8k
How STYLIGHT went responsive
nonsquared
100
5.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
The Pragmatic Product Professional
lauravandoore
36
7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Transcript
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ 2020/12/17 Shinichi
Nakagawa(@shinyorke)
ϫΠʮઌಉ͡ΛଞॴͰͨ͠Α͏ͳʯ
͋ͬʢ͠ʣ ༵ʹʮSports Analyst Meetup #9ʯͰLTͪ͠Όͬͯ·ͨ͠ https://speakerdeck.com/shinyorke/hayato-sakamoto-performance-prediction-using-feature-engineering-with-machine-learning-and-python
ʲ݁ʳࡔຊ༐ਓબखͷ༧ଌ 39ࡀͷγʔζϯ, ͖ͬͱΈΜͳʹॕ͞ΕΔͰ͠ΐ͏
ʲ݁ʳࡔຊ͞Μ3,000҆ଧ39ࡀ ※2028γʔζϯ, ͋͘·ͰݟࠐΈͰ͢
ΊͰͨ͠ΊͰͨ͠ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
͍͍, ͜ΕͰऴΘΕΜͩΖʢ͑ʣ
ͪΌΜͱωλ, ༻ҙͯ͠·͢
ॕɾࢁాਓ༷ϠΫϧτཹ ظܖظؒͷΛ AIʹ፻ͤ͞ฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ
2020/12/17 Shinichi Nakagawa(@shinyorke)
ຊͷςʔϚ • ϠΫϧτ͍ຊϓϩٿͷਓؒࠃๅͱݴͬͯաݴͰͳ͍ ࢁాਓબख͕ҰମͲΕ΄ͲͷΛࠓޙ͢ͷ͔͏ • ͿͬͪΌ͚ܖֹۚͷ׆༂͢Δͷ͔?͖ʹͳΔ • ͖͏AI͍ͥͬͯ͢͝Θ͔ͬͯ͘ΕͨΒخ͍͠ʢ͜ͳΈʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • ࣗশʮBaseball Play StudyͷϨδΣϯυʯ, ݩɾϓϩͷٿΤϯδχΞ • ࠷ۙ, 12ٿஂതѪओٛऀʹͳΓ·ͨ͠ʢ͕ݩւಓͳͷͰϋϜ͖ʹͳΔʣ.
ඵͰৼΓฦΔ2020ͷϓϩٿ • όϯςϦϯυʔϜφΰϠ, ര • ౦ژυʔϜબख, Ҡ੶ʢ༧ఆʣ • 26 -
4ʢ͠ʣ • ࢁాਓબख, 7૯ֹ40ԯԁʢਪఆʣͰϠΫϧτཹ
ࢁాਓ͞Μͷ740ԯԁͱ͔͍͏ܖ • เ5ԯԁʢʴΠϯηϯςΟϒʣ×7, Β͍͠. • ϑΝϯΈΜͳخ͍͠Ͱ͠ΐ͏, ϫΠخ͍͠Ͱ͢. • ͏ҰਓͷϫΠʮ40ԯԁͬͯݩ͕औΕΔΜΖ͔ʯ
…ͱ͍͏༁Ͱ, ٿAI͞Μʹฉ͍ͯΈ·ͨ͠.
ࠓճ͏͖͏ͷਓೳ PyCon JP 2020ͰͬͨʔͭΛͦͷ··͍·ͨ͠ʢ#spoana ͱಉ͡Ͱ͢ʣ. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ͻͱ·ͣ݁ՌΛ͓ݟͤ͠·͢.
ࢁాਓ༷ͷࠓޙ - ҆ଧɾຊྥଧɾଧ 150҆ଧͪΐ͍, 17ʙ19ຊྥଧΛՔ͗ͭͭ, 70ଧҎ্Ք͙
ࢁాਓ༷ͷࠓޙ - ଧ 32, 33ࡀ͋ͨΓͰಥવଧʹ֮Ίͯͯ໘ന͍݁Ռʹ
ࢁాਓ༷ͷࠓޙΛ·ͱΊΔͱ ͜ΕͰͣͬͱηΧϯυͬͯ͘ΕΔͳΒ͗͢͢͝Ͱ ͑?τϦϓϧεϦʔ??͏ʔʔΜ ྸ ଧ ҆ଧ ຊྥଧ ଧ ଧ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ 334ͪΌ͏Μ͔ʔ͍
ࢁాਓ༷2027ʢ34ʣ͕͢ه • ௨ࢉຊྥଧɾଧɾଧͰߴकಓࢯΛ͑Δ • ௨ࢉ2,236҆ଧͰ໊ٿձೖΓ·ͬͨͳ͠ • ໊࣮ͱʹϓϩٿ্࢙࠷ڧͷηΧϯυʹͳΔՄೳੑ
ͱ͍͑Ͱ͢Α • 7ܖதͷτϦϓϧεϦʔʢ3ׂ30ຊྥଧ30౪ྥʣଟແཧ • ਓೳ500ଧ੮Ҏ্Ք͙༧ଌΛ͍ͯ͠Δ͚Ͳ, ਓ༷Ҋ֎ނোͱ͔͋Δͷ͕ͪΐͬͱ৺ • ηΧϯυकඋෛ୲͕͔ͳΓ͋ΔϙδγϣϯͳͷͰ
ଧྗΛ׆͔ͨ͢Ίͷίϯόʔτ͋Δ͔͠Εͳ͍
݁ • ຊҰͷηΧϯυʹͳΓͦ͏ͳͷͰ740ԯͷܖଟଥ • ͱ͍͑େࣄʹͬͯཉ͍͠, ͋ΔҙຯਓؒࠃๅͰ͢͠ • ͘Ε͙ΕମʹؾΛ͚ͭͯؤுͬͯ΄͍͠ʂ
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)