Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study...
Search
Shinichi Nakagawa
PRO
December 17, 2020
Research
0
3k
坂本勇人さん改め山田哲人さんの成績予測をやってみた / Baseball Play Study 2020 Winter
Baseball Play Study 2020冬 LT資料
https://bpstudy.connpass.com/event/197652/
Shinichi Nakagawa
PRO
December 17, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
67
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
730
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
480
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
450
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.3k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.1k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
87k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Other Decks in Research
See All in Research
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
14
9.7k
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
4.1k
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
190
IMC の細かすぎる話 2025
smly
2
590
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
110
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
580
NLP Colloquium
junokim
1
190
Submeter-level land cover mapping of Japan
satai
3
230
CVPR2025論文紹介:Unboxed
murakawatakuya
0
140
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
BBQ
matthewcrist
89
9.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
The Cost Of JavaScript in 2023
addyosmani
53
8.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Code Review Best Practice
trishagee
70
19k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Transcript
ࡔຊ༐ਓ͍ͭ௨ࢉ3,000ຊ҆ଧΛ ୡ͢Δ͔AIʹฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ 2020/12/17 Shinichi
Nakagawa(@shinyorke)
ϫΠʮઌಉ͡ΛଞॴͰͨ͠Α͏ͳʯ
͋ͬʢ͠ʣ ༵ʹʮSports Analyst Meetup #9ʯͰLTͪ͠Όͬͯ·ͨ͠ https://speakerdeck.com/shinyorke/hayato-sakamoto-performance-prediction-using-feature-engineering-with-machine-learning-and-python
ʲ݁ʳࡔຊ༐ਓબखͷ༧ଌ 39ࡀͷγʔζϯ, ͖ͬͱΈΜͳʹॕ͞ΕΔͰ͠ΐ͏
ʲ݁ʳࡔຊ͞Μ3,000҆ଧ39ࡀ ※2028γʔζϯ, ͋͘·ͰݟࠐΈͰ͢
ΊͰͨ͠ΊͰͨ͠ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
͍͍, ͜ΕͰऴΘΕΜͩΖʢ͑ʣ
ͪΌΜͱωλ, ༻ҙͯ͠·͢
ॕɾࢁాਓ༷ϠΫϧτཹ ظܖظؒͷΛ AIʹ፻ͤ͞ฉ͍ͯΈ·ͨ͠ Baseball Play Study 2020ౙ - γʔζϯৼΓฦΓεϖγϟϧ
2020/12/17 Shinichi Nakagawa(@shinyorke)
ຊͷςʔϚ • ϠΫϧτ͍ຊϓϩٿͷਓؒࠃๅͱݴͬͯաݴͰͳ͍ ࢁాਓબख͕ҰମͲΕ΄ͲͷΛࠓޙ͢ͷ͔͏ • ͿͬͪΌ͚ܖֹۚͷ׆༂͢Δͷ͔?͖ʹͳΔ • ͖͏AI͍ͥͬͯ͢͝Θ͔ͬͯ͘ΕͨΒخ͍͠ʢ͜ͳΈʣ
Who am I ?ʢ͓લ୭Αʣ • Shinichi Nakagawaʢத ৳Ұʣ • େͷSNSͰʮshinyorkeʢ͠ΜΑʔ͘ʣʯͱ໊͍ͬͯ·͢
• JX Press Corporation Senior Engineer ʢJX௨৴ࣾ γχΞɾΤϯδχΞʣ • Baseball Engineer, Data Scientist ʢੜͷٿΤϯδχΞɾσʔλαΠΤϯςΟετʣ • ࣗশʮBaseball Play StudyͷϨδΣϯυʯ, ݩɾϓϩͷٿΤϯδχΞ • ࠷ۙ, 12ٿஂതѪओٛऀʹͳΓ·ͨ͠ʢ͕ݩւಓͳͷͰϋϜ͖ʹͳΔʣ.
ඵͰৼΓฦΔ2020ͷϓϩٿ • όϯςϦϯυʔϜφΰϠ, ര • ౦ژυʔϜબख, Ҡ੶ʢ༧ఆʣ • 26 -
4ʢ͠ʣ • ࢁాਓબख, 7૯ֹ40ԯԁʢਪఆʣͰϠΫϧτཹ
ࢁాਓ͞Μͷ740ԯԁͱ͔͍͏ܖ • เ5ԯԁʢʴΠϯηϯςΟϒʣ×7, Β͍͠. • ϑΝϯΈΜͳخ͍͠Ͱ͠ΐ͏, ϫΠخ͍͠Ͱ͢. • ͏ҰਓͷϫΠʮ40ԯԁͬͯݩ͕औΕΔΜΖ͔ʯ
…ͱ͍͏༁Ͱ, ٿAI͞Μʹฉ͍ͯΈ·ͨ͠.
ࠓճ͏͖͏ͷਓೳ PyCon JP 2020ͰͬͨʔͭΛͦͷ··͍·ͨ͠ʢ#spoana ͱಉ͡Ͱ͢ʣ. https://shinyorke.hatenablog.com/entry/baseball-and-ml-with-python
ͻͱ·ͣ݁ՌΛ͓ݟͤ͠·͢.
ࢁాਓ༷ͷࠓޙ - ҆ଧɾຊྥଧɾଧ 150҆ଧͪΐ͍, 17ʙ19ຊྥଧΛՔ͗ͭͭ, 70ଧҎ্Ք͙
ࢁాਓ༷ͷࠓޙ - ଧ 32, 33ࡀ͋ͨΓͰಥવଧʹ֮Ίͯͯ໘ന͍݁Ռʹ
ࢁాਓ༷ͷࠓޙΛ·ͱΊΔͱ ͜ΕͰͣͬͱηΧϯυͬͯ͘ΕΔͳΒ͗͢͢͝Ͱ ͑?τϦϓϧεϦʔ??͏ʔʔΜ ྸ ଧ ҆ଧ ຊྥଧ ଧ ଧ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ
ࢁాਓ༷ͷ௨ࢉʢ༧ଌʣ ͜ΕͰηΧϯυͬͯڧ͗͢͠·ͤΜ͔ʢ͑ʣ ظؒ ଧ ҆ଧ ຊྥଧ ଧ ଧ ·Ͱ ˞ݱ࣮
˞༧ଌ ௨ࢉʢ༧ଌʣ 334ͪΌ͏Μ͔ʔ͍
ࢁాਓ༷2027ʢ34ʣ͕͢ه • ௨ࢉຊྥଧɾଧɾଧͰߴकಓࢯΛ͑Δ • ௨ࢉ2,236҆ଧͰ໊ٿձೖΓ·ͬͨͳ͠ • ໊࣮ͱʹϓϩٿ্࢙࠷ڧͷηΧϯυʹͳΔՄೳੑ
ͱ͍͑Ͱ͢Α • 7ܖதͷτϦϓϧεϦʔʢ3ׂ30ຊྥଧ30౪ྥʣଟແཧ • ਓೳ500ଧ੮Ҏ্Ք͙༧ଌΛ͍ͯ͠Δ͚Ͳ, ਓ༷Ҋ֎ނোͱ͔͋Δͷ͕ͪΐͬͱ৺ • ηΧϯυकඋෛ୲͕͔ͳΓ͋ΔϙδγϣϯͳͷͰ
ଧྗΛ׆͔ͨ͢Ίͷίϯόʔτ͋Δ͔͠Εͳ͍
݁ • ຊҰͷηΧϯυʹͳΓͦ͏ͳͷͰ740ԯͷܖଟଥ • ͱ͍͑େࣄʹͬͯཉ͍͠, ͋ΔҙຯਓؒࠃๅͰ͢͠ • ͘Ε͙ΕମʹؾΛ͚ͭͯؤுͬͯ΄͍͠ʂ
ήʔϜηοτ⚾ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)