Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become...
Search
Shinichi Nakagawa
January 19, 2023
Business
7
15k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
機械学習エンジニアをやってた時の実話とキャリアパスについての考察
Shinichi Nakagawa
January 19, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
2
2.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
10
2.6k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
77
57k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
1
1.2k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
2
2.6k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
2
430
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
5
11k
一人でも小さく始められるGoogle Cloudで実現するほぼサーバレスなデータ基盤 / Serverless Dataplatform for Google Cloud
shinyorke
0
500
カンファレンス映えするデモアプリをPythonとCloud Runでいい感じに作った話 / Data Visualization for Dash and Cloud Run
shinyorke
1
200
Other Decks in Business
See All in Business
VISASQ: ABOUT US
eikohashiba
15
450k
LUUP Guidebook
luup_pr
0
8.4k
ユニファ株式会社 会社紹介資料
unifacorp
0
1k
enechain company deck
enechain
PRO
6
84k
ラピュタロボティクス会社紹介資料
rapyutarobotics
0
31k
「目標」に対するマインドチェンジ~評価指標から周囲への還元に考えが変わるまで~ / Scrum Fest Sendai 2024
ikuwa0720
0
300
記憶力に頼らないタスク管理 / Task management without relying on memory
tbpgr
7
14k
営業製作所_採用ピッチ資料_202407
gizm000
1
480
AI検索エンジンとは?おすすめの9個のAI検索ツールと活用ガイド(特徴・メリット・デメリット・仕組みを徹底解説!)(スライド版)
itarutomy
0
120
GLP ALFALINK 茨木 まちびらきイベント2024
glp_jp
0
940
事業所の利用を検討いただいている皆さまへ
ymtyhka7o4o8
0
280
株式会社Rehab for JAPAN会社概要
rehabrecruiting
3
63k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
270
40k
Side Projects
sachag
451
42k
Making Projects Easy
brettharned
113
5.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
30
2.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
103
48k
Building Adaptive Systems
keathley
36
2.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
21
3k
Debugging Ruby Performance
tmm1
72
12k
Building Better People: How to give real-time feedback that sticks.
wjessup
359
18k
A Modern Web Designer's Workflow
chriscoyier
691
190k
Why Our Code Smells
bkeepers
PRO
334
56k
Music & Morning Musume
bryan
46
6k
Transcript
ػցֶशΤϯδχΞ͕ࢦ͢ ΩϟϦΞύεͱͦͷ࣮ ※͜ͷϊϯϑΟΫγϣϯͰ͢ Shinichi Nakagawa@shinyorke 2023/01/19 Start Python Club #89
͜ͷεϥΠυͷରಡऀ • σʔλαΠΤϯςΟετɾػցֶशΤϯδχΞͱͯ͠ࣄΛ͍ͨ͠ํ • طʹσʔλੳɾAIతͳϓϩμΫτɾϓϩδΣΫτʹैࣄ͍ͯ͠Δ, • ϝϯόʔͷํʢΤϯδχΞɾσʔλαΠΤϯςΟετΘͣʣ • ϚωδϝϯτͷํʢϓϩμΫτɾϓϩδΣΫτͷͲͪΒ͔ʣ •
AIͱ͔σʔλͱ͔Λѻ͏৫ͷϚωδϝϯτɾڭҭ୲ͷํ Pythonͷग़·ͤΜ, R&Dɾݚڀ৬ͷํʹϚον͠ͳ͍͔🙏
Who am ɹ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿITίϯαϧاۀϚωʔδϟʔ
ʢݩɾࣄۀձࣾͷϑϧαΠΫϧΤϯδχΞʣ • ຊ৬ΫϥυΠϯϑϥΒԿΒͷίϯαϧ ݱ৬ͷׂSREɾΠϯϑϥํ໘ϝΠϯ • ػցֶशΤϯδχΞͱͯ͠ͷΩϟϦΞ • AIʹΑΔίϩφϫΫνϯछ༧ଌʢ2021ʣ • શࣾσʔλج൫ߏஙɾར׆༻ଅਐʢ2020ʣ • ٿσʔλαΠΤϯεʢ2012-ݱࡏʣ • ηΠόʔϝτϦΫε⽁͕ಘҙ
ʮਪ͠ਪͤΔ࣌ʹਪͤʯͱ͍͏ԶͷDXΛ࣮ݱ͢ΔͨΊͷαʔόϨεͳσʔλج൫։ൃͱӡ༻ https://event.shoeisha.jp/devsumi/20230209/session/4196/ σϒαϛͰσʔλج൫ͱ⽁ͷΛ͠·͢དྷͯͶ
ຊͷ͓ʢཁʣ • ػցֶशΤϯδχΞʹඞཁͳͷҎԼ3ͭ. ʢશ෦͑ͳ͍͍͔ͯ͘ΒҰͭಘҙʹͳΖ͏ʣ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ •
ϏδωεεΩϧʢ͜Ε͕͘͢͝େࣄʣ • ੜͷσʔλʹ৮ΕΔɾυοΫϑʔσΟϯά͢Δश׳େࣄ. • ΑΓ্ͷΩϟϦΞΛࢦ͢ਓ, ίϛϡχέʔγϣϯͱ νʔϜϚωδϝϯτΛେʹ.
ຊͷ͓͠ͳ͕͖ • ࢲͷػցֶशΤϯδχΞวྺ • ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετʹඞཁͳεΩϧͱ? • ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετΛࢦ͢ํ શ෦ಡΉͷ͕໘ͳํͤΊͯࠇഎܠͷεϥΠυ͚ͩͰಡΜͰ.
ࢲͷػցֶशΤϯδχΞวྺ
ࢲ͕͖ͬͯͨ͜ͱʢ࣌ܥྻʣ 30લʢ12લʣ͔ΒҰࡢʢ41ࡀʣ͘Β͍·ͰͷৼΓฦΓ
ۦ͚ग़࣌͠ʢ30લʣ • ͍࣌ͨձࣾͷࣄͰR&DͷϓϩδΣΫτʹΞαΠϯ GISʢཧใγεςϜʣͷϓϩτλΠϓ࡞ΓͰσϏϡʔ • ݚڀऀ͕࡞ͬͨΞϧΰϦζϜɾίʔυΛRubyPythonͷΞϓϦʹ ΈࠐΉͱ͍ͬͨࣄΛ͍ͯͨ͠ʢͪͳΈʹ͜Ε͕PythonσϏϡʔʣ •
FlaskͰWebΞϓϦ࡞ͬͨΓ, σʔλͷΫϨϯδϯάΛؤுͬͨΓ, PyQtʢWindowsΞϓϦʣͰσϞΛ࡞ͬͨΓͱ͔ͳΜͰͬͨ.
ۦ͚ग़࣌͠ʹಘͨεΩϧͱݟ • ੜσʔλͱ, σʔλΛੜΈग़͢ͷʢαʔϏεɾΞϓϦͳͲʣΛཧղ͢Δ. ༷ॻΛಡΉ͚ͩͰͳ͘ੜσʔλΛݟΔ, υοάϑʔσΟϯάઈରΔ. ※υοάϑʔσΟϯά=ࣄͷରʹͳΔαʔϏεΛࣗͰ͏͜ͱ. •
είʔϓʢ͘͠ΰʔϧʣΛΩϝͯ࡞ΓΔ͜ͱϝονϟେࣄ. Done is better than perfectͬͯͭʢ࡞ͬͨͷͬ͞͞ͱੈʹग़ͤʣ. • ΞϧΰϦζϜࣜɾίʔυͷྑ͞Λڝ͏ɾٞ͢Δͷେࣄ͕ͩ, ʮ༷ɾσʔλಛੑʹԊͬͨલॲཧʯ͕େࣄʢσʔλͷཧղॏཁʣ.
ϓϩδΣΫτϝϯόʔͱͯ͠ʢ30ޙʣ • ελʔτΞοϓͰෳͷػցֶशɾAIϓϩδΣΫτͷϝϯόʔ. • ଞͷػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ͕࡞ͬͨϞσϧΛ ࢲ͕γεςϜʹΈࠐΈ, ϓϩμΫτͱͯ͠ɾϦϦʔε͢Δࣄ. • ݶΒΕͨϦιʔεɾظؒͰཁٻ͞ΕΔ࣭Λ࣋ͬͯग़͢ͱ͍͏εϦϧ
νʔϜͱͯ͠ίϛϡχέʔγϣϯऔΓͳ͕Βணͤ͞Δۤ࿑ͷ࿈ଓ.
ϓϩδΣΫτϝϯόʔͱͯ͠ಘͨεΩϧͱݟ • ϓϩμΫτΦʔφʔɾσʔλαΠΤϯςΟετɾΤϯδχΞɾσβΠφʔ ͱ͍ͬͨεςʔΫϗϧμʔΈΜͳҧ͏͜ͱݴ͏ͷͰҙݟௐ(ry • ΤϯδχΞଆ໘Ͱݴ͏ͱ, σʔλαΠΤϯςΟετ͕࡞ͬͨϞσϧɾίʔυΛ ϓϩμΫτʹऔΓࠐΉ͔ͭӡ༻ʢML
Opsʣ·Ͱ͍࣋ͬͯۤ͘࿑͕͋Δ. • ʮσʔλαΠΤϯςΟετͱΤϯδχΞҧ͏ੜଶܥͷੜ͖ʯͱ֮͑Δ. ྆ऀͷίϛϡχέʔγϣϯ্͕ख͍͘͘ͱޭ, μϝͩͱ(ry
ϚωδϝϯτΛΒͤͯΒͬͨʢ40ʣ • લ৬ͷελʔτΞοϓͰҎԼϓϩδΣΫτͷऀ݉ϝϯόʔ. • શࣾతͳσʔλج൫ߏஙͱσʔλར׆༻ͷਪਐ • ίϯγϡʔϚ͚ίϯςϯπʮAIϫΫνϯछ༧ଌʯͷاը։ൃ • Ͳͬͪগਫ਼ӶνʔϜͩͬͨͷͰϚωδϝϯτɾظௐ͠ͳ͕Β,
ϝϯόʔͱͯ͠खΛಈ͔ͨ͠&ֶੜϝϯόʔ͍ͨͷͰڭҭ. • ͲͪΒྑ͍Ռ͕ग़ͯ, গͳ͘ͱॳඪୡͨ͠🎉
ϚωδϝϯτΛͬͯಘͨܦݧͱֶͼ • ʮࣦഊͯ͠Զ͕࣋ͭΘ͍ʂʯ͙Β͍ͰΔͷ͕ஸ͍͍💪 اըɾཁ݅ɾઃܭ͔ΒσϦόϦʔ·Ͱશ෦͜ͷ͓ؾ࣋ͪͰΓ͖Γ. • ʮσʔλαΠΤϯεؤுΔਓʯʮΤϯδχΞϦϯάؤுΔਓʯ Έ͍ͨͳׂ୲&མͪͦ͏ͳϘʔϧΛશ෦͕ࣗरͬͯޭ🎉 •
νʔϜϝϯόʔͷϞνϕʔτʹࡉ৺ͷҙΛ͍ͭͭؤுͬͯΒ͍, ໘͍͘͞෦͕ࣗέπΛ࣋ͭ, ࣗͳ͕Βͷউͪύλʔϯര.
࠷ऴతʹग़ͨՌͷ·ͱΊ • ۦ͚ग़࣌͠ • ͍͔ͭ͘ͷϓϩτλΠϓͱίϯηϓτϞσϧʢPoCతͳϓϩμΫτ͕ͨ͘͞Μʣ • Ұ෦ͪΐͬͱͨ͠ਓؾΞϓϦͷΠνػೳʹঢ֨ʢಓͳࣄ&υοάϑʔσΟϯάͷՌʣ • ϓϩδΣΫτϝϯόʔ࣌ •
ϏδωεϚονϯάαʔϏεͷొऀϓϩϑΟʔϧʹܦݧΛλά͚͢ΔԿ͔Λ։ൃ • ͦͷଞ, ͍͔ͭ͘ͷPoCʢͯ͢౼ͪࢮʹʣ • Ϛωδϝϯτ࣌ • AIϫΫνϯछ༧ଌʢϓϩμΫτϚωδϝϯτ݉ΤϯδχΞʣ • σʔλར׆༻ਪਐɾσʔλج൫ߏஙɾӡ༻ʢ্ʹಉ͡ʣ ۤͯ͘ਏ͍ࢥ͍ग़ͷํ͕ଟ͍Ͱ͕͢, ޭ͋Γຬ͍ͯ͠·͢&ͪͳΈʹࠓػցֶशͷࣄͯ͠·ͤΜʢҧ͏ϛογϣϯ͍ͯ͠Δʣ.
ػցֶशΤϯδχΞͱσʔλαΠΤϯςΟετʹඞཁͳεΩϧͱ? ※͋͘·ͰݸਓతͳݟղͰ͢ʢҟೝΊΔʣ
ࢲͷܦݧ͔Βݴ͑Δ ΞΧϯߟ͑ํ͔Βհ͠·͢
্ख͘ߦ͔ͳ͍ΩϟϦΞɾελϯεʢߟ͑ํʣ • Python֮͑ͯPyTorchͱ͔Jupyter͑Ε͍͍ΜͰ͠ΐ? • ֶΛͻͨ͢Βؤுͬͯษڧͨ͠Β͍͍ΑͶ? • ʮʢ͑Δσʔλ͕͋ΕʣͰ͖·͢ʯͱ͔ݴͬͪΌ͏ ࢲ͕աڈʹग़ձͬͨػցֶशΤϯδχΞʢؚΉީิऀʣͰ
͜͏͍͏ΩϟϦΞɾελϯεͰޭͨ͠ਓΛΒͳ͍.
Pythonͱֶ͔֮͑Ε͍͍ΜͰ͠ΐ? • ࠷ݶͷεΩϧɾཧղྗΛࢦ͢ҙຯͰؒҧ͍ͬͯͳ͍Ͱ͕͢, Pythonͱֶͱ͍͏ʮखஈʯ͚ͩͰNG • ੜσʔλΛ୳ࡧతʹղੳɾੳ͢Δश׳ɾӦΈ͕ॏཁ. ʮखஈʯ͜ΕΒͷաఔͰຏ͍͍ͯ͘ͰશવOK. •
PythonΊͬͪΌ͑Δ, ࣜେ͖ɾޠΕΔʂʂʂํΑΓ, SQLExcelͬͯಓʹίπίπ୳ࡧͰ͖Δํͷํ͕ΑΓ͢Δ.
ʢ͔ͭ͑Δσʔλ͕͋ΕʣͰ͖·͢ • ਓɾձ͔ࣾΒΒ͏σʔλʹґଘ͢Δʮड͚ʯͰࣄແཧ. • σʔλ͓ΑͼϏδωεཁ݅ΛݩʹʮൃऀʹఏҊͯ͠ਐΊΔʯॴ·Ͱ Δඞཁ͕͋Δ, Ͱͳ͍ͱʮՌΛೲΊΔʯࣄ͕Ͱ͖ͳ͍. • ʮ͔ͭ͑Δσʔλʯ͏ͷͰͳͯ͘,
ࣗΒ୳͠ݟ͚ͭΔͷ͕ઌ. ͦͷͨΊͷυοάϑʔσΟϯάͩͬͨΓੜσʔλͷ୳ࡧͩͬͨΓ. ʢυοάϑʔσΟϯάɾ୳ࡧͷ݁Ռ͔ΒσʔλͲ͏͠Α͏૬ஊʣ
ඞཁεΩϧΛମܥཱͯΔͱ ͜Μͳײ͡.
ػցֶशΤϯδχΞͷ εΩϧϚοϓ • ΞϓϦɾΠϯϑϥɾϏδωεͰ͚ͯߟ͑Δͱྑ͍ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ • ཁ݅ΛاըɾݴޠԽ͠ਐΊΔϏδωεεΩϧ
• νʔϜͱͯ͠3ཁૉΛͯ͢Χόʔ͢Δ͙Β͍͕ ஸΑ͍ͱࢥ͍·͢ʢҰਓͰΔͷແཧͳͷͰʣ • ֶͱϓϩάϥϛϯάΛֶशͨ͠Β͍͍ײ͡ʂ …Ͱແ͍͜ͱΛ֮͑ͯΒ͑Ε. ʢ͜Εڭҭ࠾༻ಉ͡ʣ
ΞϓϦέʔγϣϯͷεΩϧ • σʔλͱΞϧΰϦζϜͷࣝɾཧղʢ౷ܭ, ֶ, etc…ʣ • ΞϧΰϦζϜͷ࣮ʢσʔλऩूɾલॲཧɾΞϧΰϦζϜશൠʣ • ϓϩμΫτͱͯ͠ΤϯδχΞϦϯά͢Δ࣮ྗ
※APIԽ͢Δ, ύοέʔδϯά, ETLΛߏங͢Δetc… • γεςϜΛͲ͏࡞Δ͔?ӡ༻͢Δ͔??ͷࣝͱܦݧʢML OpsͳͲʣ ʮ୭͔͕ఆٛɾઃܭʯͨ͠ͷཧղɾ࣮Ͱ͖Δ, ͕ࢦ͢ಓ
ΠϯϑϥͷεΩϧ • σʔλϞσϧͷఆٛɾઃܭ • Πϯϑϥʹؔ͢ΔࣝɾܦݧʢαʔόʔΛཱͯΔ, DBνϡʔχϯάetc…ʣ • Ϋϥυ͓ΑͼΦϯϓϨϛεڥͷཧղ.AIɾσʔλج൫ͷΈͳΒͣ, ର֎γεςϜͱͷ࿈ܞͳͲ࣮ൣғ͕ඇৗʹ͍.
• Ϟσϧͷఆظߋ৽ɾσϓϩΠ, γεςϜͷӡ༻εΩϧʢSREతͳͷʣ ʮ࡞ͬͨϞσϧΛϓϩμΫτʹΈࠐΜͰ҆ఆӡ༻ʯͰ͖ΔΤϯδχΞ
ϏδωεͷεΩϧ • ʮAIͰ͍͍ײ͡ʹͯ͘͠Εʯͱ͍͏ࡶΦʔμʔ͔Βاըɾཁ݅ʹ མͱ͠ࠐΉͨΊͷपลࣝʢυϝΠϯࣝʣɾεΩϧ • PoC͔Β࣮ӡ༻ʹࢸΔ·Ͱͷϓϩηεɾܭըͷઃܭ • ϓϩδΣΫτΛਪਐ͢ΔͨΊͷϚωδϝϯτྗ
ಛʹϓϩδΣΫτϚωδϝϯτʢϓϩμΫτϚωδϝϯτେࣄʣ • ൃऀɾΤϯδχΞͷํͷΛฉ͍͍͍ͯײ͡ʹ͢Δ AIɾσʔλͷઐࣝͱରͷυϝΠϯࣝͰ͍͍ײ͡ʹ͢ΔͳΜͰ
৬छͰ͚Δͱ͜͏͍͏ײ͡ʢݸਓͷݟղʣ εΩϧ ओͳ৬छ උߟ ΞϓϦέʔγϣϯ ɾαʔόʔαΠυΤϯδχΞ ɾϑϩϯτΤϯυΤϯδχΞ ɾΞϓϦΤϯδχΞ ΤοδίϯϐϡʔςΟϯάͷ಄ʹΑΓ ΞϓϦϑϩϯτػցֶशΛѻ͏࣌
Πϯϑϥ ɾαʔόʔαΠυΤϯδχΞ ɾΠϯϑϥΤϯδχΞ ɾσʔλϕʔεΤϯδχΞ ձࣾɾνʔϜʹΑͬͯɺʮΞϓϦέʔγ ϣϯΛ࡞ΔΤϯδχΞ͕Πϯϑϥݟ Δʯ͍ΘΏΔʮ%FW0QTʯ͕ཧ༝ͰΞϓ Ϧέʔγϣϯͱ݉͋ΓಘΔ Ϗδωε ɾσʔλαΠΤϯςΟετ ɾϓϩμΫτϚωʔδϟʔ ɾ*5ίϯαϧλϯτ ༷ΛܾΊͨΓϚωδϝϯτΛͨ͠Γ͢ ΔϨΠϠʔ͕֘ɺ͜ͷਓୡ͕ίʔυΛ ·ͳ͍͠ ԿͩͬͨΒதΒͳ SZ
ඞཁͳεΩϧଟ͗͢·ͤΜ͔? • 3ͭͷεΩϧͷͲΕ͔ͰࣗͷྖҬɾΛܾΊ, ଞͷྖҬͷਓͱରʹίϛϡχέʔγϣϯͰ͖Δ͙Β͍͕ཧ. • શ෦Ͱ͖ΔΑ͏ʹͳΔඞཁ͋Γ·ͤΜ, ͱ͍͏͔ແཧͰ͢. গͳ͘ͱϓϩδΣΫτͰ3ͭ݉ແཧͰ͢ʢग़དྷͯ2ͭʣ.
• ࣗͷׂɾಘҙෆಘҙΛཧղ͠, Γͳ͍෦Λଞͷํʑͱ ڠۀ͢Δ͙Β͍ͷࣝͱεΩϧ, େਓͷ༨༟Λ࣋ͭͷ͕ϕετ.
͜Ε͔ΒػցֶशΤϯδχΞͱσʔλαΠΤϯςΟετΛࢦ͢ํ …ʹՃ͑ͯ, ϚωδϝϯτΛ͢Δਓฉ͍ͯཉ͍͠ʢ࣮ʣ
ʲ࠶ܝʳࢲ͕͖ͬͯͨ͜ͱʢ࣌ܥྻʣ ʮۦ͚ग़͠ʯʮطʹϝϯόʔʯʮϚωδϝϯτΔʯ͙Β͍Ͱ͠·͢
͜Ε͔ΒσʔλαΠΤϯεʹۦ͚ग़͢ํ • σʔλͷલॲཧɾΞϊςʔγϣϯɾWebΞϓϦ࡞Γetc… ͱʹ͔͘ͷલͷࣄΛͬͯ݁ՌɾՌग़͢ͱಉ࣌ʹεΩϧ͚ͭΑ͏. • ͜ͷ࣌ظͱʹ͔͘σʔλʹ৮Ε࣮ͯફܦݧΛੵΉ͖. ੜσʔλͱରቂ͢Δ, υοΫϑʔσΟϯά͢Δͷେࣄ.
• ʮࣗࣗͰΔػցֶशϓϩδΣΫτʯΛΔͱঘྑ͍. ࢲʮٿσʔλੳʯͰֶࣗࣗश͍͍ͯͬͯ͠ײ͡ʹͳΓ·ͨ͠.
طʹϝϯόʔͱͯ͠׆༂͍ͯ͠Δํ • ϓϩδΣΫτɾϓϩμΫτͷείʔϓͱΰʔϧΛҙࣝͯ͠ σϦόϦʔͰ͖ΔΑ͏, ٕज़ͱϚωδϝϯτΛֶͼ·͠ΐ͏. • ্ͷਓԼͷਓʮٕज़Θ͔ΒΜʯʮAIΘ͔ΒΜʯͱݴ͍͕ͪͰ ͓৺͕αϯυΠονʹͳΔͱࢥ͍·͕͕͢͜͜౿ΜுΓͲ͜Ζ.
• ʮԶΤϯδχΞʯʮࢲσʔλαΠΤϯςΟετʯతͳҙࢤΛ࣋ͭ …ͷʹՃ͑ͯ, ʮଞऀͷઆ໌ྗʯʮνʔϜΛಈ͔͢εΩϧʯΛ͚ͭΔ.
ϚωδϝϯτΛ͍ͯ͠Δor͜Ε͔Β͢Δਓ • Կ͕͕͋ͬͯࣗέπΛ࣋ͭʂ͙Β͍ʹΓ·͠ΐ͏. • ʮ͕ࣗσʔλαΠΤϯεɾΤϯδχΞϦϯάʹڧ͍ʯ͚ͩͰ✗ νʔϜͱͯ͠, ձࣾͱͯ͠Ռ͕ग़ͯφϯϘͰ͢. • ࣗͷؤுΓҎ্ʹ,
νʔϜϝϯόʔͷϞνϕʔγϣϯग़ &αʔόϯτɾϦʔμʔγοϓతʹࢧ͑Δ&མ͍ͪͯΔϘʔϧΛर͏ͷ͕˕ • νʔϜͰͷࣄͰՌ͕ग़ΔͱνʔϜϝϯόʔͱࣗͷΩϟϦΞ͕Ұؾʹ๛͔ʹͳΓ·͢. &ԾʹՌͰͳͯͦ͘ͷֶͼ͕ܦݧͱͳΓ, ࣗͷࢢՁʹܨ͕Γ·͢.
ʲ࠶ܝʳຊͷ͓ • ػցֶशΤϯδχΞʹඞཁͳͷҎԼ3ͭ. ʢશ෦͑ͳ͍͍͔ͯ͘ΒҰͭಘҙʹͳΖ͏ʣ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ •
ϏδωεεΩϧʢ͜Ε͕͘͢͝େࣄʣ • ੜͷσʔλʹ৮ΕΔɾυοΫϑʔσΟϯά͢Δश׳େࣄ. • ΑΓ্ͷΩϟϦΞΛࢦ͢ਓ, ίϛϡχέʔγϣϯͱ νʔϜϚωδϝϯτΛେʹ.
զࢥ͏ʢ·ͱΊʣ • σʔλαΠΤϯεΛ͖ʹͳΓ, ҙࢤΛ࣋ͬͯԿ͔ΛΓ͖Δ. ͦΜͳؾ࣋ͪͰࣄͰ͖Δͱ࠷ߴͰ͢&ͦ͏͍͏ඪΛݟ͚ͭΑ͏. • ࢲͷ߹, ࣄͱฒߦ͖ͯ͠ͳʮٿͷσʔλαΠΤϯεʯͰ
ٕज़৺ຏ͔Ε·ͨ͠&ޙ͜Ε͕ࣄʹͳͬͨ. • ٕज़εΩϧ + ͍͍ײ͡ͷίϛϡχέʔγϣϯͱϚωδϝϯτεΩϧ. ͜ͷ2ͭἧ͏ͱ͍͍ײ͡ʹ৯͍͚ͬͯ·͢ʢσʔλαΠΤϯεʹݶΒͣʣ.
ʁʁʁʮ͍͍ຊɾࢿྉ͋Γ·͔͢ʁʯ • ʮࣄͰ͡ΊΔػցֶशʯͪ͜Β͕େ͍ʹࢀߟʹͳΓ·ͨ͠. • https://www.oreilly.co.jp/books/9784873119472/ • ࣮ʹ͚ͯͷ࣮ફతͳ༰ɾ৺࣋ͪඇৗʹૉΒ͍͠ݴޠԽ͞Εͯ ͍·͢, ͓ࣄʹ͢Δํͥͻ͝ҰಡΛ
• खલຯḩʹͳΓ·͕͢, ࢲͷϒϩάͰΩϟϦΞʹ͍ͭͯղઆ͍ͯ͠·͢. • https://shinyorke.hatenablog.com/entry/data-science-2020
ʮਪ͠ਪͤΔ࣌ʹਪͤʯͱ͍͏ԶͷDXΛ࣮ݱ͢ΔͨΊͷαʔόϨεͳσʔλج൫։ൃͱӡ༻ https://event.shoeisha.jp/devsumi/20230209/session/4196/ ʲ࠶ܝʳσϒαϛདྷͯͶʢ2/10 15:05ొஃʣ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ @shinyorke