Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become...
Search
Shinichi Nakagawa
PRO
January 19, 2023
Business
11
19k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
機械学習エンジニアをやってた時の実話とキャリアパスについての考察
Shinichi Nakagawa
PRO
January 19, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
100
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
4.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
4.7k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
460
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.5k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
88k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.5k
Other Decks in Business
See All in Business
アッテル会社紹介資料/culture deck
attelu
10
15k
生成AIとデザインリサーチが融和する未来(RESEARCH Conference2025)
hynym
PRO
0
210
朝日新聞社 ITエンジニア キャリア採用 紹介資料
asahi_cto
0
610
株式会社LANY / Company Deck
lany
2
82k
パーソルイノベーション_会社案内
pinotalentbranding
1
32k
株式会社デイトラ FACT BOOK 2025
daytra
0
380
Sustainability Report
kuradashi
0
25k
なぜ人はすれ違うのか_製造業で当たり前に行っていた根回しから考える、事前の配慮で顧客やチームとの対話を促進する方法
katsuakihoribe8
1
3.7k
快適なエンジニアリングライフ実現するための ワークもとい会社ハック / Work Hacks for a More Comfortable Engineering Life
nttcom
6
2.3k
Cloudbase Recruiting Deck / 採用資料
cloudbaseinc
0
670
社内LTで醸成する開発組織のアウトプット文化
tonegawa07
0
190
メドピアグループ紹介資料
medpeer_recruit
10
140k
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
950
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Embracing the Ebb and Flow
colly
88
4.8k
Designing Experiences People Love
moore
142
24k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How STYLIGHT went responsive
nonsquared
100
5.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.2k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Faster Mobile Websites
deanohume
310
31k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Transcript
ػցֶशΤϯδχΞ͕ࢦ͢ ΩϟϦΞύεͱͦͷ࣮ ※͜ͷϊϯϑΟΫγϣϯͰ͢ Shinichi Nakagawa@shinyorke 2023/01/19 Start Python Club #89
͜ͷεϥΠυͷରಡऀ • σʔλαΠΤϯςΟετɾػցֶशΤϯδχΞͱͯ͠ࣄΛ͍ͨ͠ํ • طʹσʔλੳɾAIతͳϓϩμΫτɾϓϩδΣΫτʹैࣄ͍ͯ͠Δ, • ϝϯόʔͷํʢΤϯδχΞɾσʔλαΠΤϯςΟετΘͣʣ • ϚωδϝϯτͷํʢϓϩμΫτɾϓϩδΣΫτͷͲͪΒ͔ʣ •
AIͱ͔σʔλͱ͔Λѻ͏৫ͷϚωδϝϯτɾڭҭ୲ͷํ Pythonͷग़·ͤΜ, R&Dɾݚڀ৬ͷํʹϚον͠ͳ͍͔🙏
Who am ɹ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿITίϯαϧاۀϚωʔδϟʔ
ʢݩɾࣄۀձࣾͷϑϧαΠΫϧΤϯδχΞʣ • ຊ৬ΫϥυΠϯϑϥΒԿΒͷίϯαϧ ݱ৬ͷׂSREɾΠϯϑϥํ໘ϝΠϯ • ػցֶशΤϯδχΞͱͯ͠ͷΩϟϦΞ • AIʹΑΔίϩφϫΫνϯछ༧ଌʢ2021ʣ • શࣾσʔλج൫ߏஙɾར׆༻ଅਐʢ2020ʣ • ٿσʔλαΠΤϯεʢ2012-ݱࡏʣ • ηΠόʔϝτϦΫε⽁͕ಘҙ
ʮਪ͠ਪͤΔ࣌ʹਪͤʯͱ͍͏ԶͷDXΛ࣮ݱ͢ΔͨΊͷαʔόϨεͳσʔλج൫։ൃͱӡ༻ https://event.shoeisha.jp/devsumi/20230209/session/4196/ σϒαϛͰσʔλج൫ͱ⽁ͷΛ͠·͢དྷͯͶ
ຊͷ͓ʢཁʣ • ػցֶशΤϯδχΞʹඞཁͳͷҎԼ3ͭ. ʢશ෦͑ͳ͍͍͔ͯ͘ΒҰͭಘҙʹͳΖ͏ʣ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ •
ϏδωεεΩϧʢ͜Ε͕͘͢͝େࣄʣ • ੜͷσʔλʹ৮ΕΔɾυοΫϑʔσΟϯά͢Δश׳େࣄ. • ΑΓ্ͷΩϟϦΞΛࢦ͢ਓ, ίϛϡχέʔγϣϯͱ νʔϜϚωδϝϯτΛେʹ.
ຊͷ͓͠ͳ͕͖ • ࢲͷػցֶशΤϯδχΞวྺ • ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετʹඞཁͳεΩϧͱ? • ػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετΛࢦ͢ํ શ෦ಡΉͷ͕໘ͳํͤΊͯࠇഎܠͷεϥΠυ͚ͩͰಡΜͰ.
ࢲͷػցֶशΤϯδχΞวྺ
ࢲ͕͖ͬͯͨ͜ͱʢ࣌ܥྻʣ 30લʢ12લʣ͔ΒҰࡢʢ41ࡀʣ͘Β͍·ͰͷৼΓฦΓ
ۦ͚ग़࣌͠ʢ30લʣ • ͍࣌ͨձࣾͷࣄͰR&DͷϓϩδΣΫτʹΞαΠϯ GISʢཧใγεςϜʣͷϓϩτλΠϓ࡞ΓͰσϏϡʔ • ݚڀऀ͕࡞ͬͨΞϧΰϦζϜɾίʔυΛRubyPythonͷΞϓϦʹ ΈࠐΉͱ͍ͬͨࣄΛ͍ͯͨ͠ʢͪͳΈʹ͜Ε͕PythonσϏϡʔʣ •
FlaskͰWebΞϓϦ࡞ͬͨΓ, σʔλͷΫϨϯδϯάΛؤுͬͨΓ, PyQtʢWindowsΞϓϦʣͰσϞΛ࡞ͬͨΓͱ͔ͳΜͰͬͨ.
ۦ͚ग़࣌͠ʹಘͨεΩϧͱݟ • ੜσʔλͱ, σʔλΛੜΈग़͢ͷʢαʔϏεɾΞϓϦͳͲʣΛཧղ͢Δ. ༷ॻΛಡΉ͚ͩͰͳ͘ੜσʔλΛݟΔ, υοάϑʔσΟϯάઈରΔ. ※υοάϑʔσΟϯά=ࣄͷରʹͳΔαʔϏεΛࣗͰ͏͜ͱ. •
είʔϓʢ͘͠ΰʔϧʣΛΩϝͯ࡞ΓΔ͜ͱϝονϟେࣄ. Done is better than perfectͬͯͭʢ࡞ͬͨͷͬ͞͞ͱੈʹग़ͤʣ. • ΞϧΰϦζϜࣜɾίʔυͷྑ͞Λڝ͏ɾٞ͢Δͷେࣄ͕ͩ, ʮ༷ɾσʔλಛੑʹԊͬͨલॲཧʯ͕େࣄʢσʔλͷཧղॏཁʣ.
ϓϩδΣΫτϝϯόʔͱͯ͠ʢ30ޙʣ • ελʔτΞοϓͰෳͷػցֶशɾAIϓϩδΣΫτͷϝϯόʔ. • ଞͷػցֶशΤϯδχΞɾσʔλαΠΤϯςΟετ͕࡞ͬͨϞσϧΛ ࢲ͕γεςϜʹΈࠐΈ, ϓϩμΫτͱͯ͠ɾϦϦʔε͢Δࣄ. • ݶΒΕͨϦιʔεɾظؒͰཁٻ͞ΕΔ࣭Λ࣋ͬͯग़͢ͱ͍͏εϦϧ
νʔϜͱͯ͠ίϛϡχέʔγϣϯऔΓͳ͕Βணͤ͞Δۤ࿑ͷ࿈ଓ.
ϓϩδΣΫτϝϯόʔͱͯ͠ಘͨεΩϧͱݟ • ϓϩμΫτΦʔφʔɾσʔλαΠΤϯςΟετɾΤϯδχΞɾσβΠφʔ ͱ͍ͬͨεςʔΫϗϧμʔΈΜͳҧ͏͜ͱݴ͏ͷͰҙݟௐ(ry • ΤϯδχΞଆ໘Ͱݴ͏ͱ, σʔλαΠΤϯςΟετ͕࡞ͬͨϞσϧɾίʔυΛ ϓϩμΫτʹऔΓࠐΉ͔ͭӡ༻ʢML
Opsʣ·Ͱ͍࣋ͬͯۤ͘࿑͕͋Δ. • ʮσʔλαΠΤϯςΟετͱΤϯδχΞҧ͏ੜଶܥͷੜ͖ʯͱ֮͑Δ. ྆ऀͷίϛϡχέʔγϣϯ্͕ख͍͘͘ͱޭ, μϝͩͱ(ry
ϚωδϝϯτΛΒͤͯΒͬͨʢ40ʣ • લ৬ͷελʔτΞοϓͰҎԼϓϩδΣΫτͷऀ݉ϝϯόʔ. • શࣾతͳσʔλج൫ߏஙͱσʔλར׆༻ͷਪਐ • ίϯγϡʔϚ͚ίϯςϯπʮAIϫΫνϯछ༧ଌʯͷاը։ൃ • Ͳͬͪগਫ਼ӶνʔϜͩͬͨͷͰϚωδϝϯτɾظௐ͠ͳ͕Β,
ϝϯόʔͱͯ͠खΛಈ͔ͨ͠&ֶੜϝϯόʔ͍ͨͷͰڭҭ. • ͲͪΒྑ͍Ռ͕ग़ͯ, গͳ͘ͱॳඪୡͨ͠🎉
ϚωδϝϯτΛͬͯಘͨܦݧͱֶͼ • ʮࣦഊͯ͠Զ͕࣋ͭΘ͍ʂʯ͙Β͍ͰΔͷ͕ஸ͍͍💪 اըɾཁ݅ɾઃܭ͔ΒσϦόϦʔ·Ͱશ෦͜ͷ͓ؾ࣋ͪͰΓ͖Γ. • ʮσʔλαΠΤϯεؤுΔਓʯʮΤϯδχΞϦϯάؤுΔਓʯ Έ͍ͨͳׂ୲&མͪͦ͏ͳϘʔϧΛશ෦͕ࣗरͬͯޭ🎉 •
νʔϜϝϯόʔͷϞνϕʔτʹࡉ৺ͷҙΛ͍ͭͭؤுͬͯΒ͍, ໘͍͘͞෦͕ࣗέπΛ࣋ͭ, ࣗͳ͕Βͷউͪύλʔϯര.
࠷ऴతʹग़ͨՌͷ·ͱΊ • ۦ͚ग़࣌͠ • ͍͔ͭ͘ͷϓϩτλΠϓͱίϯηϓτϞσϧʢPoCతͳϓϩμΫτ͕ͨ͘͞Μʣ • Ұ෦ͪΐͬͱͨ͠ਓؾΞϓϦͷΠνػೳʹঢ֨ʢಓͳࣄ&υοάϑʔσΟϯάͷՌʣ • ϓϩδΣΫτϝϯόʔ࣌ •
ϏδωεϚονϯάαʔϏεͷొऀϓϩϑΟʔϧʹܦݧΛλά͚͢ΔԿ͔Λ։ൃ • ͦͷଞ, ͍͔ͭ͘ͷPoCʢͯ͢౼ͪࢮʹʣ • Ϛωδϝϯτ࣌ • AIϫΫνϯछ༧ଌʢϓϩμΫτϚωδϝϯτ݉ΤϯδχΞʣ • σʔλར׆༻ਪਐɾσʔλج൫ߏஙɾӡ༻ʢ্ʹಉ͡ʣ ۤͯ͘ਏ͍ࢥ͍ग़ͷํ͕ଟ͍Ͱ͕͢, ޭ͋Γຬ͍ͯ͠·͢&ͪͳΈʹࠓػցֶशͷࣄͯ͠·ͤΜʢҧ͏ϛογϣϯ͍ͯ͠Δʣ.
ػցֶशΤϯδχΞͱσʔλαΠΤϯςΟετʹඞཁͳεΩϧͱ? ※͋͘·ͰݸਓతͳݟղͰ͢ʢҟೝΊΔʣ
ࢲͷܦݧ͔Βݴ͑Δ ΞΧϯߟ͑ํ͔Βհ͠·͢
্ख͘ߦ͔ͳ͍ΩϟϦΞɾελϯεʢߟ͑ํʣ • Python֮͑ͯPyTorchͱ͔Jupyter͑Ε͍͍ΜͰ͠ΐ? • ֶΛͻͨ͢Βؤுͬͯษڧͨ͠Β͍͍ΑͶ? • ʮʢ͑Δσʔλ͕͋ΕʣͰ͖·͢ʯͱ͔ݴͬͪΌ͏ ࢲ͕աڈʹग़ձͬͨػցֶशΤϯδχΞʢؚΉީิऀʣͰ
͜͏͍͏ΩϟϦΞɾελϯεͰޭͨ͠ਓΛΒͳ͍.
Pythonͱֶ͔֮͑Ε͍͍ΜͰ͠ΐ? • ࠷ݶͷεΩϧɾཧղྗΛࢦ͢ҙຯͰؒҧ͍ͬͯͳ͍Ͱ͕͢, Pythonͱֶͱ͍͏ʮखஈʯ͚ͩͰNG • ੜσʔλΛ୳ࡧతʹղੳɾੳ͢Δश׳ɾӦΈ͕ॏཁ. ʮखஈʯ͜ΕΒͷաఔͰຏ͍͍ͯ͘ͰશવOK. •
PythonΊͬͪΌ͑Δ, ࣜେ͖ɾޠΕΔʂʂʂํΑΓ, SQLExcelͬͯಓʹίπίπ୳ࡧͰ͖Δํͷํ͕ΑΓ͢Δ.
ʢ͔ͭ͑Δσʔλ͕͋ΕʣͰ͖·͢ • ਓɾձ͔ࣾΒΒ͏σʔλʹґଘ͢Δʮड͚ʯͰࣄແཧ. • σʔλ͓ΑͼϏδωεཁ݅ΛݩʹʮൃऀʹఏҊͯ͠ਐΊΔʯॴ·Ͱ Δඞཁ͕͋Δ, Ͱͳ͍ͱʮՌΛೲΊΔʯࣄ͕Ͱ͖ͳ͍. • ʮ͔ͭ͑Δσʔλʯ͏ͷͰͳͯ͘,
ࣗΒ୳͠ݟ͚ͭΔͷ͕ઌ. ͦͷͨΊͷυοάϑʔσΟϯάͩͬͨΓੜσʔλͷ୳ࡧͩͬͨΓ. ʢυοάϑʔσΟϯάɾ୳ࡧͷ݁Ռ͔ΒσʔλͲ͏͠Α͏૬ஊʣ
ඞཁεΩϧΛମܥཱͯΔͱ ͜Μͳײ͡.
ػցֶशΤϯδχΞͷ εΩϧϚοϓ • ΞϓϦɾΠϯϑϥɾϏδωεͰ͚ͯߟ͑Δͱྑ͍ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ • ཁ݅ΛاըɾݴޠԽ͠ਐΊΔϏδωεεΩϧ
• νʔϜͱͯ͠3ཁૉΛͯ͢Χόʔ͢Δ͙Β͍͕ ஸΑ͍ͱࢥ͍·͢ʢҰਓͰΔͷແཧͳͷͰʣ • ֶͱϓϩάϥϛϯάΛֶशͨ͠Β͍͍ײ͡ʂ …Ͱແ͍͜ͱΛ֮͑ͯΒ͑Ε. ʢ͜Εڭҭ࠾༻ಉ͡ʣ
ΞϓϦέʔγϣϯͷεΩϧ • σʔλͱΞϧΰϦζϜͷࣝɾཧղʢ౷ܭ, ֶ, etc…ʣ • ΞϧΰϦζϜͷ࣮ʢσʔλऩूɾલॲཧɾΞϧΰϦζϜશൠʣ • ϓϩμΫτͱͯ͠ΤϯδχΞϦϯά͢Δ࣮ྗ
※APIԽ͢Δ, ύοέʔδϯά, ETLΛߏங͢Δetc… • γεςϜΛͲ͏࡞Δ͔?ӡ༻͢Δ͔??ͷࣝͱܦݧʢML OpsͳͲʣ ʮ୭͔͕ఆٛɾઃܭʯͨ͠ͷཧղɾ࣮Ͱ͖Δ, ͕ࢦ͢ಓ
ΠϯϑϥͷεΩϧ • σʔλϞσϧͷఆٛɾઃܭ • Πϯϑϥʹؔ͢ΔࣝɾܦݧʢαʔόʔΛཱͯΔ, DBνϡʔχϯάetc…ʣ • Ϋϥυ͓ΑͼΦϯϓϨϛεڥͷཧղ.AIɾσʔλج൫ͷΈͳΒͣ, ର֎γεςϜͱͷ࿈ܞͳͲ࣮ൣғ͕ඇৗʹ͍.
• Ϟσϧͷఆظߋ৽ɾσϓϩΠ, γεςϜͷӡ༻εΩϧʢSREతͳͷʣ ʮ࡞ͬͨϞσϧΛϓϩμΫτʹΈࠐΜͰ҆ఆӡ༻ʯͰ͖ΔΤϯδχΞ
ϏδωεͷεΩϧ • ʮAIͰ͍͍ײ͡ʹͯ͘͠Εʯͱ͍͏ࡶΦʔμʔ͔Βاըɾཁ݅ʹ མͱ͠ࠐΉͨΊͷपลࣝʢυϝΠϯࣝʣɾεΩϧ • PoC͔Β࣮ӡ༻ʹࢸΔ·Ͱͷϓϩηεɾܭըͷઃܭ • ϓϩδΣΫτΛਪਐ͢ΔͨΊͷϚωδϝϯτྗ
ಛʹϓϩδΣΫτϚωδϝϯτʢϓϩμΫτϚωδϝϯτେࣄʣ • ൃऀɾΤϯδχΞͷํͷΛฉ͍͍͍ͯײ͡ʹ͢Δ AIɾσʔλͷઐࣝͱରͷυϝΠϯࣝͰ͍͍ײ͡ʹ͢ΔͳΜͰ
৬छͰ͚Δͱ͜͏͍͏ײ͡ʢݸਓͷݟղʣ εΩϧ ओͳ৬छ උߟ ΞϓϦέʔγϣϯ ɾαʔόʔαΠυΤϯδχΞ ɾϑϩϯτΤϯυΤϯδχΞ ɾΞϓϦΤϯδχΞ ΤοδίϯϐϡʔςΟϯάͷ಄ʹΑΓ ΞϓϦϑϩϯτػցֶशΛѻ͏࣌
Πϯϑϥ ɾαʔόʔαΠυΤϯδχΞ ɾΠϯϑϥΤϯδχΞ ɾσʔλϕʔεΤϯδχΞ ձࣾɾνʔϜʹΑͬͯɺʮΞϓϦέʔγ ϣϯΛ࡞ΔΤϯδχΞ͕Πϯϑϥݟ Δʯ͍ΘΏΔʮ%FW0QTʯ͕ཧ༝ͰΞϓ Ϧέʔγϣϯͱ݉͋ΓಘΔ Ϗδωε ɾσʔλαΠΤϯςΟετ ɾϓϩμΫτϚωʔδϟʔ ɾ*5ίϯαϧλϯτ ༷ΛܾΊͨΓϚωδϝϯτΛͨ͠Γ͢ ΔϨΠϠʔ͕֘ɺ͜ͷਓୡ͕ίʔυΛ ·ͳ͍͠ ԿͩͬͨΒதΒͳ SZ
ඞཁͳεΩϧଟ͗͢·ͤΜ͔? • 3ͭͷεΩϧͷͲΕ͔ͰࣗͷྖҬɾΛܾΊ, ଞͷྖҬͷਓͱରʹίϛϡχέʔγϣϯͰ͖Δ͙Β͍͕ཧ. • શ෦Ͱ͖ΔΑ͏ʹͳΔඞཁ͋Γ·ͤΜ, ͱ͍͏͔ແཧͰ͢. গͳ͘ͱϓϩδΣΫτͰ3ͭ݉ແཧͰ͢ʢग़དྷͯ2ͭʣ.
• ࣗͷׂɾಘҙෆಘҙΛཧղ͠, Γͳ͍෦Λଞͷํʑͱ ڠۀ͢Δ͙Β͍ͷࣝͱεΩϧ, େਓͷ༨༟Λ࣋ͭͷ͕ϕετ.
͜Ε͔ΒػցֶशΤϯδχΞͱσʔλαΠΤϯςΟετΛࢦ͢ํ …ʹՃ͑ͯ, ϚωδϝϯτΛ͢Δਓฉ͍ͯཉ͍͠ʢ࣮ʣ
ʲ࠶ܝʳࢲ͕͖ͬͯͨ͜ͱʢ࣌ܥྻʣ ʮۦ͚ग़͠ʯʮطʹϝϯόʔʯʮϚωδϝϯτΔʯ͙Β͍Ͱ͠·͢
͜Ε͔ΒσʔλαΠΤϯεʹۦ͚ग़͢ํ • σʔλͷલॲཧɾΞϊςʔγϣϯɾWebΞϓϦ࡞Γetc… ͱʹ͔͘ͷલͷࣄΛͬͯ݁ՌɾՌग़͢ͱಉ࣌ʹεΩϧ͚ͭΑ͏. • ͜ͷ࣌ظͱʹ͔͘σʔλʹ৮Ε࣮ͯફܦݧΛੵΉ͖. ੜσʔλͱରቂ͢Δ, υοΫϑʔσΟϯά͢Δͷେࣄ.
• ʮࣗࣗͰΔػցֶशϓϩδΣΫτʯΛΔͱঘྑ͍. ࢲʮٿσʔλੳʯͰֶࣗࣗश͍͍ͯͬͯ͠ײ͡ʹͳΓ·ͨ͠.
طʹϝϯόʔͱͯ͠׆༂͍ͯ͠Δํ • ϓϩδΣΫτɾϓϩμΫτͷείʔϓͱΰʔϧΛҙࣝͯ͠ σϦόϦʔͰ͖ΔΑ͏, ٕज़ͱϚωδϝϯτΛֶͼ·͠ΐ͏. • ্ͷਓԼͷਓʮٕज़Θ͔ΒΜʯʮAIΘ͔ΒΜʯͱݴ͍͕ͪͰ ͓৺͕αϯυΠονʹͳΔͱࢥ͍·͕͕͢͜͜౿ΜுΓͲ͜Ζ.
• ʮԶΤϯδχΞʯʮࢲσʔλαΠΤϯςΟετʯతͳҙࢤΛ࣋ͭ …ͷʹՃ͑ͯ, ʮଞऀͷઆ໌ྗʯʮνʔϜΛಈ͔͢εΩϧʯΛ͚ͭΔ.
ϚωδϝϯτΛ͍ͯ͠Δor͜Ε͔Β͢Δਓ • Կ͕͕͋ͬͯࣗέπΛ࣋ͭʂ͙Β͍ʹΓ·͠ΐ͏. • ʮ͕ࣗσʔλαΠΤϯεɾΤϯδχΞϦϯάʹڧ͍ʯ͚ͩͰ✗ νʔϜͱͯ͠, ձࣾͱͯ͠Ռ͕ग़ͯφϯϘͰ͢. • ࣗͷؤுΓҎ্ʹ,
νʔϜϝϯόʔͷϞνϕʔγϣϯग़ &αʔόϯτɾϦʔμʔγοϓతʹࢧ͑Δ&མ͍ͪͯΔϘʔϧΛर͏ͷ͕˕ • νʔϜͰͷࣄͰՌ͕ग़ΔͱνʔϜϝϯόʔͱࣗͷΩϟϦΞ͕Ұؾʹ๛͔ʹͳΓ·͢. &ԾʹՌͰͳͯͦ͘ͷֶͼ͕ܦݧͱͳΓ, ࣗͷࢢՁʹܨ͕Γ·͢.
ʲ࠶ܝʳຊͷ͓ • ػցֶशΤϯδχΞʹඞཁͳͷҎԼ3ͭ. ʢશ෦͑ͳ͍͍͔ͯ͘ΒҰͭಘҙʹͳΖ͏ʣ • ΞϓϦΛ࡞Δɾಈ͔͢εΩϧ • ΠϯϑϥΛߏஙɾӡ༻͢ΔεΩϧ •
ϏδωεεΩϧʢ͜Ε͕͘͢͝େࣄʣ • ੜͷσʔλʹ৮ΕΔɾυοΫϑʔσΟϯά͢Δश׳େࣄ. • ΑΓ্ͷΩϟϦΞΛࢦ͢ਓ, ίϛϡχέʔγϣϯͱ νʔϜϚωδϝϯτΛେʹ.
զࢥ͏ʢ·ͱΊʣ • σʔλαΠΤϯεΛ͖ʹͳΓ, ҙࢤΛ࣋ͬͯԿ͔ΛΓ͖Δ. ͦΜͳؾ࣋ͪͰࣄͰ͖Δͱ࠷ߴͰ͢&ͦ͏͍͏ඪΛݟ͚ͭΑ͏. • ࢲͷ߹, ࣄͱฒߦ͖ͯ͠ͳʮٿͷσʔλαΠΤϯεʯͰ
ٕज़৺ຏ͔Ε·ͨ͠&ޙ͜Ε͕ࣄʹͳͬͨ. • ٕज़εΩϧ + ͍͍ײ͡ͷίϛϡχέʔγϣϯͱϚωδϝϯτεΩϧ. ͜ͷ2ͭἧ͏ͱ͍͍ײ͡ʹ৯͍͚ͬͯ·͢ʢσʔλαΠΤϯεʹݶΒͣʣ.
ʁʁʁʮ͍͍ຊɾࢿྉ͋Γ·͔͢ʁʯ • ʮࣄͰ͡ΊΔػցֶशʯͪ͜Β͕େ͍ʹࢀߟʹͳΓ·ͨ͠. • https://www.oreilly.co.jp/books/9784873119472/ • ࣮ʹ͚ͯͷ࣮ફతͳ༰ɾ৺࣋ͪඇৗʹૉΒ͍͠ݴޠԽ͞Εͯ ͍·͢, ͓ࣄʹ͢Δํͥͻ͝ҰಡΛ
• खલຯḩʹͳΓ·͕͢, ࢲͷϒϩάͰΩϟϦΞʹ͍ͭͯղઆ͍ͯ͠·͢. • https://shinyorke.hatenablog.com/entry/data-science-2020
ʮਪ͠ਪͤΔ࣌ʹਪͤʯͱ͍͏ԶͷDXΛ࣮ݱ͢ΔͨΊͷαʔόϨεͳσʔλج൫։ൃͱӡ༻ https://event.shoeisha.jp/devsumi/20230209/session/4196/ ʲ࠶ܝʳσϒαϛདྷͯͶʢ2/10 15:05ొஃʣ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ @shinyorke