Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
野球エンジニアの72万球 #BPStudy
Search
Shinichi Nakagawa
PRO
March 29, 2018
Research
0
2.5k
野球エンジニアの72万球 #BPStudy
Baseballsavantを例とした可視化と簡単な分析事例です
Shinichi Nakagawa
PRO
March 29, 2018
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
1.2k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
2.8k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
10
2.8k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
77
59k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.3k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.7k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
460
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
11k
機械学習エンジニアが目指すキャリアパスとその実話 / My Journey to Become a ML Engineer
shinyorke
PRO
9
16k
Other Decks in Research
See All in Research
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
260
Language is primarily a tool for communication rather than thought
ryou0634
4
760
The many faces of AI and the role of mathematics
gpeyre
1
1.3k
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
350
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
370
CoRL2024サーベイ
rpc
1
880
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
690
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
150
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
55
20k
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
830
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
130
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
550
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
327
21k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
[RailsConf 2023] Rails as a piece of cake
palkan
52
5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Bash Introduction
62gerente
608
210k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
880
Docker and Python
trallard
40
3.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Transcript
ٿΤϯδχΞͷ72ສٿ τϥοΩϯάɾσʔλ͔ΒޠΔٿϊϯϑΟΫγϣϯ Shinichi Nakagawa@shinyorke
ٿΤϯδχΞis୭?
ʲʳϫΠͰ͢ • Shinichi Nakagawa(த৳Ұ) • ωΫετϕʔε CTO/ٿΤϯδχΞ • #ηΠόʔϝτϦΫε #Python
#σʔλੳ • Baseball Play Study ։͔࢝࣌Βৗ࿈(2014ʙ) • Baseball Play Study͔Βϗϯτʹٿքʹདྷ·ͨ͠
ʁʁʁʮ72ສٿ͛ͨΒݞග͕(ryʯ ※͛ͯͳ͍Ͱ͢w
72ສٿ=MLBͷ1γʔζϯٿ 2017ͷ࣮,ϨΪϡϥʔγʔζϯͷΈ. ϓϨʔΦϑΛؚΊΔͱ73ສٿͪΐͬͱʹͳΔ.
Ͳ͜ʹσʔλ͋Δͷ? • MLBެࣜʮBaseballsavantʯͱ͍͏αΠτͰ ୭ͰೖखͰ͖Δ • https://baseballsavant.mlb.com/ statcast_search • τϥοΫϚϯɾStatcastͰهͨ͠ τϥοΩϯάɾσʔλ͕ݩʹͳ͍ͬͯΔ
τϥοΫϚϯ=ٿɾଧٿͷܭଌػث ͘Θ͘͠ʮBaseball GeeksʯͷղઆΛͲ͏ͧʂ https://www.baseballgeeks.jp/?p=3551
ࠓͷςʔϚʮଧٿʯ • 72ສٿ͔Βબग़ͨ͠ʮҹతͳଧٿʯΛհ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • งғؾΛ௫ΜͰ͘ΕΔͱ͋Γ͕͍ͨͰ͢
128,945 / 718,917(ٿ) ※શσʔλͷ18%Λ༻(͓͓Αͦ100MB͘Β͍)
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ खͷ͓ࣄκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ ্͕Γ͗͌͢ खͷ͓ࣄκʔϯ
֮͑ͯ΄͍͜͠ͱ • ͍͍ײ͡ͷʮଧٿʯʮඈᠳ֯ʯͰඈͿଧٿϗʔϜϥϯɾଧʹͳΔՄೳੑ͕ߴ͍ • ҆ • 187km/h / 8~50 •
161km/h / 24~33 • 158km/h / 26~30 • ͜ΕΛʮόϨϧκʔϯʯͱ͍͍·͢ • ʁʁʁʮڈϑϥΠϘʔϧɾϨϘϦϡʔγϣϯ͕͋ͬͨ͡Όͳ͍ɺͦΕ(ryʯ ˠਖ਼ղʂͦ͏͍͏͜ͱͰ͢ • ʲࢀߟจݙʳ https://www.baseballgeeks.jp/?p=1342 ※Baseball GeeksΑΓҾ༻
ೋਓͷଧऀʹ͍ͭͯ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • ͜ͷೋਓͷଧٿΛݟͯΈΑ͏
ҰਓʮIchiro Suzukiʯ ϚϦφʔζ෮ؼ͓ΊͰͱ͏͍͟͝·͢ʂ ը૾ɿ https://commons.wikimedia.org/wiki/File:Ichiro_Suzuki_2010.jpg
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ όϨϧ ൃݟʂ
ΠνϩʔબखͷόϨϧ • 2017/8/22 ϑΟϦʔζઓ(ఢͰͷࢼ߹) • ୈ3߸ιϩ,ઌൃͷϊϥ͔ΒҰൃ • 160.48 km/h, 28
• શ3ຊͷΞʔνத,όϨϧೖΓ͜ͷ1ຊͷΈ …Ͱ͚͢Ͳ,͜Ε͕40ͱ͔ා͍(ଚܟͷ؟ࠩ͠)
ೋਓʮMike Troutʯ େ୩ᠳฏ(ΤϯδΣϧε)ͷಉ྅͔ͭεʔύʔελʔ ը૾ɿ https://commons.wikimedia.org/wiki/File:Los_Angeles_Angels_center_fielder_Mike_Trout_(27)_(5972457428).jpg
Mike Trout #ͱ ※೦ͷҝ • ϝδϟʔΛද͢ΔελʔͷҰਓ • ϩαϯθϧεɾΤϯθϧεͷ֎ख(ηϯλʔ) • ӈ͛ӈଧͪ,26ࡀ,ϝδϟʔ8
• ߈कࡾഥࢠ͕ʮຊʹʯἧ໊ͬͨબख • ௨ࢉOPS .976ɹ˞Ϊʔλ(ιϑτόϯΫ).946
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢ όϨϧ͚ͩͲ Ξτͩͱʁ
Ξτʹͳͬͨଧٿͷৄࡉ X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
͜Ε͍͢͝ϓϨʔͳͷͰʁ • ͱࢥ͍,ࢼ߹݁ՌΛνΣοΫ • هɿηϯλʔϑϥΠ • ϑΝΠϯϓϨʔͱ͍͏هͳ͘ • ී௨ͷଧٿͱͯ͠ͱΒΕ͍ͯͨ •
ϝονϟྑ͍͋ͨΓͷਅਖ਼໘ͩͬͨʁʁʁ ;ʔΜ(ಡΈ)
·ͱΊ • ϝδϟʔϦʔάଧٿɾٿͷσʔλ͕ϑΝϯͰ͑Δ • ଧٿͱ֯ʹண͢Δ͚ͩͰ৭ʑͳࢹ͕Ͱ͖Δ • Πνϩʔબख·ͩ·͔ͩͬͱͤΔ (ελΠϧม͑ͯ͘Εͳ͍͔ͳ͋ʁ) • େ୩ᠳฏ͕͛Δͱ͖τϥτʹͯ͠Ͷ
• ࢸͬͯී௨ͷϑϥΠ࣮ී௨͡Όͳ͍Մೳੑ͕
τϥοΩϯάɾσʔλ ָ͘͠ͳ͖͔ͬͯͨͳʁ
Baseball GeeksͰͬͱָ͘͠! • τϥοΩϯάɾσʔλΛ׆༻ͨ͠ٿͷ৽͍͠ݟํɾࢹΛհͯ͠·͢ • σʔλɾεϙʔπՊֶͰ໌Β͔ʹͳͬͨ͜ͱΛʮΘ͔Γ͘͢ʯ͑Δ • ΈΜͳಡΜͰͶ&ϒΫϚΑΖ͘͠ʂ https://www.baseballgeeks.jp/
ϓϨΠϘʔϧʂ ࠓٿͰྑ͍ҰΛʂ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)