12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point Causal Inference: What If ಡॻձ Chapter 12: IP Weighting and Marginal Structural Models Azusa Matsumoto Reardon August 2, 2020 1 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 1 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 2 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point σʔλ ถࠃࠃຽ݈߁ӫཆௐࠪ NHEFS/National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study ΞϝϦΧࠃཱӴੜ౷ܭηϯλʔ/National Center for Health Statistics ΞϝϦΧࠃཱԽݚڀॴ/National Institute on Aging ΞϝϦΧެऺӴੜہ/United States Public Health Service 1971-75 ͷ Baseline ௐࠪˍ 1982 ͷ Follow-up ௐࠪ ؚ·ΕΔαϯϓϧ 25-74 ࡀͷݸਓ Baseline Ͱ٤Ԏ͍ͯ͠Δͱճ ੳʹؚΉมͷʹܽམ͕ͳ͍ʢˠ 12.6ʣ N = 1566 3 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point Surrogate Confounder ؍ଌͰ͖Δ L ͱ؍ଌͰ͖ͳ͍ U ͕૬ؔ͢ΔɻL Λௐ͢ ͖͔ʁ L Λௐ͢Δ͜ͱͰ A ← U → Y ͷόοΫυΞύεΛ෦తʹ ϒϩοΫͰ͖Δ 7 ষͷ Technical Point 7.3 ࢀর ʢA ʹӡಈश׳ɺY=৺ଁ࣬ױɺU ʹࣾձܦࡁతഎܠɺL=ऩೖʣ 7 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 9 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 12.2 Estimating IP wights via modeling IPW Ͱٙࣅूஂ (pseudo-population) Λ࡞Γͩͦ͏ͱͯ͠ ͍Δɻ ͠શһ͕ېԎ͍ͯͨ͠Βʁ ͠શһ͕ېԎ͍ͯ͠ͳ͔ͬͨΒʁ ٙࣅूஂͷͭ̎ͭͷੑ࣭ A ͱ L ͕ಠཱ Eps[Y|A = a] ٙࣅूஂͷ mean = ∑ l E[Y|A = a,L = l]Pr[L = l] ࣮ࡍͷूஂͷ standardized mean 9 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 17 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 12.3 Stabilized IP weights IP weights WA = 1 f(A|L) ɺStudy population શһͷίϐʔ Λ̎ͭ࡞Δɻ Expected mean of the weights WA = 2 17 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point ΜͿΜ͜ ΄͔ͷΓ͔ͨ͋Δ YOɻͨͱ͑͜Μͳٙࣅूஂ Pseudo-population with P = 0.5 (Probability of receiving A = 1) = 0.5 (Probability of receiving A = 0) = 0.5 IP weights: 0.5 f(A|L) ֶతʹɺ͜Ε·Ͱͷ Pseudo-population(̎ͭίϐʔ ͨ͠߹) ͷ weight Λ̎Ͱׂͬͨͷͱಉ͡ Expected mean of the weights WA= 1 Effect estimate ಉ͡ ଞͷ֬ p f(A|L) 0 < p ≤ 1 Ͱ͋ΕɺͲΕಉ͡ ˠ Tehnical Point 12.2 18 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point ٙࣅूஂʹඞཁͳͷɺTreatment A ͱ Confounder L ͕ಠ ཱͰ͋Δ͜ͱɻTreatment A Λड͚Δ֬ p ͷ͕ L ʹґଘ ͠ͳ͍ͷͰ͋ΕɺͲΜͳͰͳ͍ɻ Α͘ΘΕΔͷݩͷूஂͷ A ͷׂ߹ɿ f(A) f(A|L) Treated: Pr[A = 1] in the original population = 0.257(403/1566) Pr[A = 1] f(A|L) Untreated: Pr[A = 0] = in the original population = 0.743(1163/1566) Pr[A = 0] f(A|L) 19 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 24 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point ࣍ͷεςοϓɿIP weights ͰٙࣅूஂΛ࡞ͬͯϞσϧʹ ϑΟοτ͠Α͏ɻ E[Y|A] = θ0 +θ1A+θ2A2 Stabilized weight (SWA) = f(A) f(A|L) ΛٻΊΔʹʜ ೋͷ A ͷ߹ logistic model Ͱ Pr[A = 1|L] Λٻ Ίͨ ࿈ଓͷ A ͷ߹ Probability density function (PDF) PDF ʹର͢ΔԾఆ f(A|L): Normal (Gaussian) with mean µL = E[A|L] f(A|L): Constant variance σ2 f(A): Normal (Gaussian) Estimated SWA: min=0.19, max=5.10, mean=1.00 29 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 32 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point ҙ WA ·ͨ SWA ΛٻΊΔࡍɺcovariates L ʹ V ΛՃ͢Δඞ ཁ͕͋Δɻ V ͕ confounder Ͱͳ͍߹Ճඞཁɻ SWA ͷࢠɺ f[A] Λ͏͖͔ f[A|V] Λ͏͖͔ʁ SWA(V) = f[A|V] f[A|L] V ΛՃ͑Δͱ CI ͕ڱ͘ͳΔɻࢠͱͰ V ͕ variation Λ ٵऩ͢Δˠ SWA ͷϨϯδڱ͘ͳΔˠ narrow CI 33 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point Covarite L ʹՃ͑Δαϒηοτ V ʹؔͯ͠ɺݚڀऀ͕ 1 Effect modifier Ͱ͋Δͱڧ͘ߟ͑Δ 2 ରʹڧ͍ؔ৺͕͋ΔʢશମͷूஂͦͷͷΑΓʣ ߹ʹݶΔ͖ɻ ΤηपลߏϞσϧ (faux marginal structural model) ͯ͢͠ͷม L Λ marginal structural model ʹՃ͑ͨ ͱͨ͠ΒɺSWA(L) = 1 ͱͳΓɺͦͦ IPW ͢Δඞཁͳ ͍ɻී௨ʹ L ͍ΕͯճؼΛճ͚ͩ͢Ͱ OK Confouder ͷௐͱ Effect modification ผ 2 ͭͷ Treatment A ͱ B ͷަޓ࡞༻ʹؔ৺͕͋Δ߹ A ͱ B ͷύϥϝʔλʔͲͪΒ marginal structural model ʹೖΕΔ IP weights ͷ Treatment A ͱ B ͷ joint probabilityPr(A∩B) Exchangeability, positivity, consistency ͷԾఆ͕ඞཁ 34 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 35 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 41 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point 1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 43 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point Positivity ͕୲อ͞ΕΔ߹, E I(A = a) f(A|L) = 1 ͳͷͰɺ E I(A=a)Y f(A|L) E I(A=a) f(A|L) = E I(A = a)Y f(A|L) ೋͷ Y ͷ߹ɺ͔ͳΒͣ 0 ͔Β̍ͷΛͱΔɻ 44 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point E I(A=a)Y f(A|L) E I(A=a) f(A|L) Positivity ͕୲อ͞Εͳ͍߹ɺ = ∑ l E[Y|A = a,L = l,L ∈ Q(a)]Pr[L = l|L ∈ Q(a)] Exchangeability ͕୲อ͞Εͳ͍߹ɺ E[Ya|L ∈ Q(a)] where Q(a) = l;Pr(A−a|L = l) > 0 is the set of values l for which A = a may be observed with positive probability. Positivity ͕୲อ͞Εͳ͚ΕɺHorvitz-Thompson estimator Ͱ a = 1 ͱ a = 0 ΛൺֱΛߦͬͯɺҼՌతղऍ Ͱ͖ͳ͍ɻ 45 / 48
12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point IP weights 1 f[A|L] ͷ߹ E I(A = a)Y f(A|L) IP weighted mean = E[Ya] Counterfactual mean = E I(A=a)Y f(A|L) E I(A=a) f(A|L) Modified Horvitz-Thompson estimator Stabilized IP weights g[A] f[A|L] ͷ߹ E[Ya] = E I(A=a)Y f(A|L) g(A) E I(A=a) f(A|L) g(A) = E[Ya]g(A) g(A) 47 / 48