$30 off During Our Annual Pro Sale. View Details »

IP Weighting and Marginal Structural Models(Causal inference: What if, Chapter 12)

Shuntaro Sato
November 25, 2020

IP Weighting and Marginal Structural Models(Causal inference: What if, Chapter 12)

Keywords: 因果推論, IP Weighting(逆確率重み付け), Stabilized IP weight, Marginal structural models

Shuntaro Sato

November 25, 2020
Tweet

More Decks by Shuntaro Sato

Other Decks in Science

Transcript

  1. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Causal Inference: What If ಡॻձ
    Chapter 12: IP Weighting and Marginal Structural
    Models
    Azusa Matsumoto Reardon
    August 2, 2020
    1 / 48

    View Slide

  2. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    1 / 48

    View Slide

  3. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    2 / 48

    View Slide

  4. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.1 The causal question
    ېԎˠମॏ૿ྔͷҼՌޮՌ
    ؍ଌσʔλʹର͠ IP Weighting Λ༻͍Δ
    2 / 48

    View Slide

  5. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    σʔλ
    ถࠃࠃຽ݈߁ӫཆௐࠪ
    NHEFS/National Health and Nutrition Examination Survey
    Data I Epidemiologic Follow-up Study
    ΞϝϦΧࠃཱӴੜ౷ܭηϯλʔ/National Center for
    Health Statistics
    ΞϝϦΧࠃཱ࿝Խݚڀॴ/National Institute on Aging
    ΞϝϦΧެऺӴੜہ/United States Public Health
    Service
    1971-75 ೥ͷ Baseline ௐࠪˍ 1982 ೥ͷ Follow-up ௐࠪ
    ؚ·ΕΔαϯϓϧ
    25-74 ࡀͷݸਓ
    Baseline Ͱ٤Ԏ͍ͯ͠Δͱճ౴
    ෼ੳʹؚΉม਺ͷ஋ʹܽམ͕ͳ͍ʢˠ 12.6ʣ
    N = 1566
    3 / 48

    View Slide

  6. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ୯७ൺֱ
    Treatment (A) ېԎ
    A = 1: Baseline ͱ Follw-up ͷؒʹېԎΛͨ͠ݸਓ
    A = 0: ্هҎ֎
    Outcome (Y) ମॏ૿Ճ
    Y =(Follow-up ͷମॏ)-(Baseline ͷମॏ)
    ېԎͨ͠άϧʔϓͷฏۉମॏ૿Ճྔ
    E[Y|A = 1] = 4.5kg(n = 403)
    ېԎ͠ͳ͔ͬͨάϧʔϓͷฏۉମॏ૿Ճྔ
    E[Y|A = 0] = 2.0kg(n = 1163)
    ୯७ൺֱ͢Δͱʜ
    E[Y|A = 1]−E[Y|A = 0] = 2.5kg(1.7,3.4)
    4 / 48

    View Slide

  7. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ஌Γ͍ͨҼՌޮՌ
    ͳͥ୯७ൺֱ͡ΌͩΊͳͷ͔?
    ˠશ͘ҟͳͬͨूஂͷൺֱʹͳͬͯ͠·͏ɻ
    5 / 48

    View Slide

  8. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ஌Γ͍ͨҼՌޮՌ
    ΋͠શһ͕ېԎ͍ͯͨ͠ΒΈΒΕͨͰ͋Ζ͏ฏۉମॏ૿
    Ճྔ (൓ࣄ࣮)
    E[Ya=1]
    ΋͠શһ͕ېԎ͍ͯ͠ͳ͔ͬͨΒΈΒΕͨͰ͋Ζ͏ฏۉ
    ମॏ૿Ճྔ (൓ࣄ࣮)
    E[Ya=0]
    ஌Γ͍ͨҼՌޮՌ
    E[Ya=1]−E[Ya=0]
    ̸= E[Y|A = 1]−E[Y|A = 0]
    6 / 48

    View Slide

  9. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Surrogate Confounder
    ؍ଌͰ͖Δ L ͱ؍ଌͰ͖ͳ͍ U ͕૬ؔ͢ΔɻL Λௐ੔͢΂
    ͖͔ʁ
    L Λௐ੔͢Δ͜ͱͰ A ← U → Y ͷόοΫυΞύεΛ෦෼తʹ
    ϒϩοΫͰ͖Δ
    7 ষͷ Technical Point 7.3 ࢀর
    ʢA ʹӡಈश׳ɺY=৺ଁ࣬ױɺU ʹࣾձܦࡁతഎܠɺL=ऩೖʣ
    7 / 48

    View Slide

  10. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Surrogate Confounder
    ͜ͷষͰௐ੔͢Δ Confounder
    1 ੑผ (0: male, 1: female)
    2 ೥ྸ (years)
    3 ਓछ (0: white, 1: otherwise)
    4 ڭҭྺ (5 ΧςΰϦʔ)
    5 ٤Ԏྔ (Ұ೔ʹٵ͏ຊ਺)
    6 ٤Ԏྺ (years)
    7 ೔ৗతͳӡಈྔ (3 ΧςΰϦʔ)
    8 εϙʔπ׆ಈ (3 ΧςΰϦʔ)
    9 ମॏ (kg)
    Ͳͷม਺Λௐ੔͢΂͖͔ʁ ˠʢChapter 18)
    8 / 48

    View Slide

  11. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    9 / 48

    View Slide

  12. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.2 Estimating IP wights via modeling
    IPW Ͱٙࣅूஂ (pseudo-population) Λ࡞Γͩͦ͏ͱͯ͠
    ͍Δɻ
    ΋͠શһ͕ېԎ͍ͯͨ͠Βʁ
    ΋͠શһ͕ېԎ͍ͯ͠ͳ͔ͬͨΒʁ
    ٙࣅूஂͷ΋ͭ̎ͭͷੑ࣭
    A ͱ L ͕ಠཱ
    Eps[Y|A = a]
    ٙࣅूஂͷ mean
    = ∑
    l
    E[Y|A = a,L = l]Pr[L = l]
    ࣮ࡍͷूஂͷ standardized mean
    9 / 48

    View Slide

  13. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Conditional Exchangeablity
    Ya ⊥
    ⊥ A|L
    ɹ
    1 Conditional Exchangeability ͕੒ΓཱͭͷͰ͋Ε͹ɺ
    E[Ya] ͸ٙࣅूஂͱ࣮ࡍͷूஂͱ΋ʹಉ͡ͱͳΔɻ
    2 ٙࣅूஂͰ Unconditional exchangeability ͕੒Γཱͭɻ
    ަབྷͳ͠ɻ
    3 E[Ya]
    ൓ࣄ࣮ੈքͷฏۉ஋
    = Eps[Y|A = a]
    ٙࣅूஂͷฏۉ஋
    4 Αͬͯɺٙࣅूஂʹ͓͚Δ૬ؔ͸ҼՌؔ܎ͱղऍͰ͖Δɻ
    10 / 48

    View Slide

  14. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ٙࣅूஂͷͭ͘Γ͔ͨ
    Ͳ͏΍ͬͯͦΜͳٙࣅूஂΛͭ͘Δͷʁ
    ˠ Treatment level Λݸਓ͕ड͚Δ֬཰ (conditional on L) ͷ
    ٯ਺Λ weight ͱͯ͠࢖͏
    L Ͱ৚݅෇͚ͨېԎ͢Δ֬཰
    Pr[A = 1|L]
    L Ͱ৚݅෇͚ͨېԎ͠ͳ͍֬཰
    Pr[A = 0|L] = 1−Pr[A = 1|L]
    Treatment A ʹର͢Δݸਓͷ IP weight
    WA =
    1
    f(A|L)
    L Ͱ৚݅෇͚ͨېԎ͢Δ֬཰
    11 / 48

    View Slide

  15. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ٙࣅूஂͷͭ͘Γ͔ͨ
    Figure 2.1
    2 ষͰ͸ Causally interpreted tree Ͱ
    non-parametrically ʹܭࢉͨ͠ɻ
    ࠓճͷΑ͏ͳߴ࣍ݩͳσʔλͩͱɺେมͳ͜ͱʹͳͬͯ
    ͠·͏ʂ 9 confounders, up to 6 levels, 2 million
    branches!
    ͦ͏ͩɺϞσϧʹཔΖ͏ɻ
    12 / 48

    View Slide

  16. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    εςοϓ 1
    ͸͡ΊʹɺPr[A = 1|L] Λ Parametric ʹਪܭ
    ˆ
    Pr[A = 1|L] Λ 1566 ਓͷ͢΂ͯͷ L ͷ஋ͷίϯϏωʔγϣϯ
    ͰٻΊΔ
    ੍໿
    ࿈ଓม਺͸ Linearʢ௚ઢؔ܎ʣͱ quadratic termʢೋ࣍
    ؔ਺తʣ
    No product term ʢަޓ࡞༻Λߟྀ͠ͳ͍ɺ
    Unsaturatedʣ
    IP weights (WA) ͷฏۉ: 2.00(min : 1.05,max : 16.7)
    13 / 48

    View Slide

  17. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    εςοϓ 2
    IP weights ʹΑͬͯ࡞ΒΕͨٙࣅूஂʹ͓͚Δࠩ
    ˆ
    Eps[Y|A = 1]− ˆ
    Eps[Y|A = 0]
    ஌Γ͍ͨҼՌޮՌ
    E[Ya=1]−E[Ya=0]
    IP weights (WA) ʹΑͬͯ࡞ΒΕͨٙࣅूஂʹ͓͚Δࠩ͸஌
    Γ͍ͨҼՌޮՌͱͳΔɻ
    ٙࣅूஂͷ A ʹަབྷ͕ͳ͍
    Pr[A = 1|L] ͷϞσϧ͕ਖ਼͍͠
    14 / 48

    View Slide

  18. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ·ͱΊ
    Weighted Least Squares
    E[Y|A] = θ0 +θ1A
    ېԎͨ͠ਓͷ Estimated IP weights ˆ
    W
    1
    ˆ
    Pr[A = 1|L]
    ېԎ͠ͳ͔ͬͨਓͷ Estimated IP weights ˆ
    W
    1
    1− ˆ
    Pr[A = 1|L]
    ˆ
    θ1 = 3.4kg(2.4,4.5) ... ېԎ͢Δ͜ͱͰ૿͑Δମॏ
    15 / 48

    View Slide

  19. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Confidence Interval
    Weights Λߟྀͨ͠ CI ͸Ͳ͏΍ͬͯٻΊΔͷʁ
    1 ౷ܭཧ࿦ʹج͖ͮରԠ͢Δ Variance Λͭ͘Δ
    ଟ͘ͷ౷ܭιϑτ͕ѻ͍ͬͯͳ͍ɻ
    2 Nonparametric boostrap Ͱۙࣅˠ Technical Point
    3.1
    Ϛγϯύϫʔ͕ඞཁ
    3 Robust variance
    อकతͰଟ͘ͷ౷ܭιϑτͰ͸σϑΥϧτͰઃఆ͞Εͯ
    ͍Δ
    ͜ͷষͷ CI ͸͢΂ͯ (3)
    Pr[A = 1|L] ͷϞσϧ͕ਖ਼͘͠ͳ͍৔߹ɺθ0
    ͱ θ1
    ʹόΠΞεɺ
    CI ͕ਅ࣮ͷ஋ΛؚΉ֬཰͸ 95 ˋͱͳΒͳ͍
    16 / 48

    View Slide

  20. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    17 / 48

    View Slide

  21. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.3 Stabilized IP weights
    IP weights WA = 1
    f(A|L)
    ͸ɺStudy population શһͷίϐʔ
    Λ̎ͭ࡞Δɻ
    Expected mean of the weights WA = 2
    17 / 48

    View Slide

  22. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ͸ΜͿΜ͜
    ΄͔ͷ΍Γ͔ͨ΋͋Δ YOɻͨͱ͑͹͜Μͳٙࣅूஂ
    Pseudo-population with P = 0.5
    (Probability of receiving A = 1) = 0.5
    (Probability of receiving A = 0) = 0.5
    IP weights: 0.5
    f(A|L)
    ਺ֶతʹ͸ɺ͜Ε·Ͱͷ Pseudo-population(̎ͭίϐʔ
    ͨ͠৔߹) ͷ weight Λ̎Ͱׂͬͨ΋ͷͱಉ͡
    Expected mean of the weights WA= 1
    Effect estimate ΋ಉ͡
    ଞͷ֬཰
    p
    f(A|L)
    0 < p ≤ 1 Ͱ͋Ε͹ɺͲΕ΋ಉ͡ ˠ Tehnical Point 12.2
    18 / 48

    View Slide

  23. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ٙࣅूஂʹඞཁͳͷ͸ɺTreatment A ͱ Confounder L ͕ಠ
    ཱͰ͋Δ͜ͱɻTreatment A Λड͚Δ֬཰ p ͷ஋͕ L ʹґଘ
    ͠ͳ͍ͷͰ͋Ε͹ɺͲΜͳ஋Ͱ΋໰୊ͳ͍ɻ
    Α͘࢖ΘΕΔͷ͸ݩͷूஂͷ A ͷׂ߹ɿ
    f(A)
    f(A|L)
    Treated: Pr[A = 1] in the original population
    = 0.257(403/1566)
    Pr[A = 1]
    f(A|L)
    Untreated: Pr[A = 0] = in the original population
    = 0.743(1163/1566)
    Pr[A = 0]
    f(A|L)
    19 / 48

    View Slide

  24. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Ծ૝ͷϥϯμϜԽ࣮ݧ
    ୈ 2 ষ Figure 2.1 ͷσʔλͷ৔߹
    Stabilized IP weights: f(A)
    f(A|L)
    Pr[A = 1] = 13
    20
    = 0.65
    Pr[A = 0] = 7
    20
    = 0.35
    ͜ͷ̓ٙࣅूஂ͕໛฿͢Δ
    ɹ 65% ͕ A = 1
    ɹ 35% ͕ A = 0
    ͷԾ૝ͷϥϯμϜԽ࣮ݧ
    20 / 48
    Figure 12.1

    View Slide

  25. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Weight ʹΑΔҧ͍
    Type Weight Min. Max. Mean
    Nonstabilized weights WA = 1
    f(A|L)
    1.05 16.7 2
    Stabilized weights SWA = f(A)
    f(A|L)
    0.33 4.30 1
    Stabilized weights ͷ΄͏͕Ϩϯδ͕ڱ͍
    21 / 48

    View Slide

  26. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ېԎͱମॏ૿ՃͷέʔεͰ SWA (stabilized weights) Λ࢖ͬ
    ͯܭࢉ͠ͳ͓ͯ͠ΈΑ͏ɻ
    1 ෼฼ Pr[A = 1|L]
    ϩδεςΟοΫճؼͰ Study population 1566 ਓͷ
    conditional probability ΛٻΊΔʢSection 12.2 ͱಉ͡ʣ
    2 ෼ࢠ Pr[A = 1]
    403
    1566
    Saturated logistic model
    3 ҼՌޮՌ E[Ya=1]−E[Ya=0]
    E[Y|A] = θ0 +θ1A
    ېԎऀͷ SWA: ˆ
    Pr[A=1]
    ˆ
    Pr[A=1|L]
    ඇېԎऀͷ SWA: (1− ˆ
    Pr[A=1])
    (1− ˆ
    Pr[A=1|L])
    SWA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ
    θ1 = 3.5kg(2.4,4.5)
    WA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ
    θ1 = 3.5kg(2.4,4.5)
    22 / 48

    View Slide

  27. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ಉ݁͡ՌʹͳΔͳΒɺͳΜͰ Stabilized weights Λ͔ͭ
    ͏ͷʁ
    ˠ Unsaturated ͷ৔߹ɺConfidence Interval ͕ Narrow ʹ
    ͳΔɻ
    Time-varying treatment ΍ continuous treatment ͳͲͰ͸ɺ
    શͯͷόϦΤʔγϣϯΛϞσϧʹՃ͑Δ͜ͱ͸ݱ࣮తͰ͸
    ͳ͍ɻ
    ͜Ε·ͰͷྫͰ͸ɺTreatment A ͸ 2 ஋͔͠ͱΕͳ͔ͬͨ
    (Saturated)
    E[Y|A] = θ0 +θ1A
    Continuous treatment ͷ৔߹ (ˠ TP12.2)
    23 / 48

    View Slide

  28. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    24 / 48

    View Slide

  29. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.4 Marginal structural models
    Marginal Structural Mean Model:
    Outcome ͕ unobservable
    ݱ࣮ͷσʔλͰϑΟοτ͢Δ͜ͱ͸Ͱ͖ͳ͍ɻ
    E[Ya]
    ൓ࣄ࣮
    = β0 +β1a
    a = 0ʢېԎ͠ͳ͍ʣ
    ͱ͖... E[Ya] = β0
    a = 1ʢېԎ͢Δʣ
    ɹͱ͖... E[Ya] = β0 +β1
    β1 = E[Ya=1]−E[Ya=0]
    24 / 48

    View Slide

  30. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Marginal structural models
    IP weight ͰٙࣅूஂΛ࡞ΓɺWLS ͰϑΟοτ
    E[Y|A] = θ0 +θ1A
    ੍໿ʢAssumptionʣͷ΋ͱɺٙࣅूஂͰͷ૬ؔ͸ҼՌؔ܎ͱ
    ղऍͰ͖Δɻ
    ٙࣅूஂͷ૬ؔ ˆ
    θ1
    ˣ
    ҼՌޮՌ β1 = E[Ya=1]−E[Ya=0]
    25 / 48

    View Slide

  31. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Continuous treatment
    ͜Ε·Ͱͷ Treatment (A) ͸ೋ஋
    (1: ېԎͨ͠ɺ0: ͠ͳ͔ͬͨʣ
    E[Ya] = β0 +β1a
    Ϟσϧ͔ΒશͯͷόϦΤʔγϣϯ͕ਪఆͰ͖Δɻ(Saturated)
    ࠨลͷ unknownɿE[Ya=1],E[Ya=1]
    ӈลͷ unknownɿβ0,β1
    Treatment A ͕࿈ଓม਺ͷ৔߹͸ʁ
    ৽͍͠ Treatment: ٤ԎྔͷมԽ
    A = (1 ೔ͷλόί٤Ԏຊ਺ɿfollow-up)
    ɹ − (1 ೔ͷλόί٤Ԏຊ਺ɿbaseline)
    ର৅αϯϓϧɿϕʔεϥΠϯͰͷ 1 ೔٤Ԏຊ਺͕ 25 ຊ
    ҎԼͷݸਓʢN=1162ʣ
    26 / 48

    View Slide

  32. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Continuous Treatment
    ஌Γ͍ͨҼՌޮՌɿ
    E[Ya]−E[Ya′
    ]
    Marginal structural model:
    E[Ya] = β0 +β1a+β2a2
    a2 = a×a
    β0 = E[Ya=0]
    a = 0ʢ٤Ԏྔ͕มΘΒͳ͔ͬͨ৔߹ʣͷฏۉମॏ૿Ճྔɻ
    27 / 48

    View Slide

  33. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ஌Γ͍ͨҼՌޮՌɿ
    E[Ya]−E[Ya′
    ]
    Marginal structural model:
    E[Ya] = β0 +β1a+β2a2
    ྫɿ1 ೔ 20 ຊ૿͑ͨਓͱมΘΒͳ͔ͬͨਓͷൺֱ:
    E[Ya=20]−E[Ya=0]
    β0
    Marginal structural model:
    E[Ya=20] = β0 +20β1 +400β2
    E[Ya=20]−E[Ya=0] = 20β1 +400β2
    ඞཁͳͷ͸ β1
    ͱ β2
    28 / 48

    View Slide

  34. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ࣍ͷεςοϓɿIP weights ͰٙࣅूஂΛ࡞ͬͯϞσϧʹ
    ϑΟοτ͠Α͏ɻ
    E[Y|A] = θ0 +θ1A+θ2A2
    Stabilized weight (SWA) = f(A)
    f(A|L)
    ΛٻΊΔʹ͸ʜ
    ೋ஋ͷ A ͷ৔߹͸ logistic model Ͱ Pr[A = 1|L] Λٻ
    Ίͨ
    ࿈ଓͷ A ͷ৔߹͸ Probability density function
    (PDF)
    PDF ʹର͢ΔԾఆ
    f(A|L): Normal (Gaussian) with mean µL = E[A|L]
    f(A|L): Constant variance σ2
    f(A): Normal (Gaussian)
    Estimated SWA: min=0.19, max=5.10, mean=1.00
    29 / 48

    View Slide

  35. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Marginal structural model:
    E[Ya] = β0 +β1a+β2a2
    ݁Ռɻ
    ˆ
    β0 = 2.005
    ˆ
    β1 = −0.109
    ˆ
    β2 = 0.003
    ΋͠٤ԎྔΛม͑ͳ͔ͬͨΒˠ 2.0kg(1.4,3.5)
    ΋͠٤ԎྔΛ 1 ೔ 20 ຊ૿΍ͨ͠Βˠ 0.9kg(−1.7,3.5)
    30 / 48

    View Slide

  36. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ೋ஋ͷΞ΢τΧϜͷ৔߹
    ৽͍͠ೋ஋ͷΞ΢τΧϜɿېԎͱࢮ๢
    ېԎ (A)1992 ೥·Ͱʹ
    A = 1: ېԎͨ͠, A = 0: ېԎ͠ͳ͔ͬͨ
    ࢮ๢ (D)1992 ೥·Ͱʹ
    D = 1: ࢮ๢ͨ͠, D = 0: ࢮ๢͠ͳ͔ͬͨ
    Marginal structural logistic model
    logitPr[Da = 1] = α0 +α1a
    IP weight Ͱ࡞ͬͨٙࣅूஂͰਪܭ
    logitPr[D = 1|A] = θ0 +θ1A
    exp( ˆ
    θ1) = 1.0(0.8,1.4)
    Causal odds ratio
    31 / 48

    View Slide

  37. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    32 / 48

    View Slide

  38. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.5 Effect modification and marginal
    structural models
    Covariates ʹ͍ͭͯɿ
    ݚڀͷλʔήοτͱ͢Δ parameter ͕ average causal
    effect Ͱ͋Δ৔߹͸جຊՃ͑ͳ͍ɻ
    Effect modification ʹؔ৺͕͋Δ৔߹͸Ճ͑Δɻ
    ݟ͍ͨ΋ͷɿV ͷϨϕϧؒͰͷ Treatment ͷޮՌͷҧ͍ɻ
    ྫɿېԎͷޮՌ͸உঁͰҧ͏͔ʁ sex V (1: woman, 0: man)
    E[Ya|V] = β0 +β1a+β2Va+β3V
    V ͰίϯσΟγϣϯͯ͠͠·͍ͬͯΔͷͰɺݫີʹ
    ͸”marginal model” Ͱ͸ͳ͍ɻ
    IPW Ͱௐ੔ͯ͠ϑΟοτɿ
    E[Y|A,V] = θ0 +θ1A+θ2VA+θ3V
    32 / 48

    View Slide

  39. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ஫ҙ
    WA ·ͨ͸ SWA ΛٻΊΔࡍɺcovariates L ʹ V Λ௥Ճ͢Δඞ
    ཁ͕͋Δɻ
    V ͕ confounder Ͱ͸ͳ͍৔߹΋௥Ճ͸ඞཁɻ
    SWA ͷ෼ࢠɺ f[A] Λ࢖͏΂͖͔ f[A|V] Λ࢖͏΂͖͔ʁ
    SWA(V) =
    f[A|V]
    f[A|L]
    V ΛՃ͑Δͱ CI ͕ڱ͘ͳΔɻ෼ࢠͱ෼฼Ͱ V ͕ variation Λ
    ٵऩ͢Δˠ SWA ͷϨϯδڱ͘ͳΔˠ narrow CI
    33 / 48

    View Slide

  40. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Covarite L ʹՃ͑Δαϒηοτ V ʹؔͯ͠͸ɺݚڀऀ͕
    1 Effect modifier Ͱ͋Δͱڧ͘ߟ͑Δ
    2 ର৅ʹڧ͍ؔ৺͕͋Δʢશମͷूஂͦͷ΋ͷΑΓ΋ʣ
    ৔߹ʹݶΔ΂͖ɻ
    Τηपลߏ଄Ϟσϧ (faux marginal structural model)
    ΋͢͠΂ͯͷม਺ L Λ marginal structural model ʹՃ͑ͨ
    ͱͨ͠ΒɺSWA(L) = 1 ͱͳΓɺͦ΋ͦ΋ IPW ͢Δඞཁ΋ͳ
    ͍ɻී௨ʹ L ͍ΕͯճؼΛճ͚ͩ͢Ͱ OK
    Confouder ͷௐ੔ͱ Effect modification ͸ผ෺
    2 ͭͷ Treatment A ͱ B ͷަޓ࡞༻ʹؔ৺͕͋Δ৔߹
    A ͱ B ͷύϥϝʔλʔͲͪΒ΋ marginal structural
    model ʹೖΕΔ
    IP weights ͷ෼฼͸ Treatment A ͱ B ͷ joint
    probabilityPr(A∩B)
    Exchangeability, positivity, consistency ͷԾఆ͕ඞཁ
    34 / 48

    View Slide

  41. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    35 / 48

    View Slide

  42. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.6 Censoring and missing data
    ܽམม਺
    N = 1566: 1982 ೥ͷϑΥϩʔΞοϓௐࠪ࣌ͷମॏͷσʔλ͕
    ܽམ͍ͯ͠Δ 63 ਓ͕আ֎ (censoring) ͞Ε͍ͯΔɻ
    ˠ Selection bias ͷՄೳੑ͕͋Δ
    Censoring
    Censoring (C): 1982 ೥ͷମॏଌఆ
    C = 1: ମॏଌఆ͞Εͳ͔ͬͨʢআ֎͞Εͨʣ
    C = 0: ମॏଌఆ͞Εͨʢআ֎͞Εͳ͔ͬͨʣ
    ͜Ε·Ͱͷ෼ੳʢ12.2, 12.4ʣ
    ɺ࣮͸...
    E[Y|A] = θ0 +θ1A
    E[Y|A,C = 0] = θ0 +θ1A
    35 / 48

    View Slide

  43. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    36 / 48
    আ֎͞Εͳ͔ͬͨݸਓ (c = 0) ͚ͩΛର৅ͱ͢ΔͱɺC ͕ A ͱ
    Y ͷ Collider ͋Δ͍͸ Collider ͷࢠଙͰ͋Δ৔߹ʹɺόΠ
    ΞεͷڪΕ͕͋Δɻ

    View Slide

  44. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Example data Ͱ͸໰୊͋Γͦ͏ɻ
    Treatment A ͱ C ʹ૬ؔ:
    ېԎऀ (A = 1) ͷ 5.8 ˋ͕ Censored
    ൱ېԎऀ (A = 0) ͷ 3.2 ˋ͕ Censored
    Y ͷ predictor ͱ C ʹ૬ؔɿϕʔεϥΠϯ࣌ͷମॏ
    আ֎ऀ (C = 1) 76.6kg
    ൱আ֎ऀ (C = 0) 70.8kg
    ஌Γ͍ͨҼՌޮՌɿA ͱ C ͷ joint effect
    E[Ya=1,c=0]
    શһېԎˍআ֎ͳ͠
    − E[Ya=0,c=0]
    શһ൱ېԎˍআ֎ͳ͠
    37 / 48

    View Slide

  45. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ͲΜͳ IP weight Λ࢖͏ͷ͔ʁ
    WA,C = WA ×WC
    আ֎͞Εͳ͔ͬͨਓͷ WC = 1
    Pr[C=0|L,A]
    আ֎͞Εͨਓͷɹɹɹ WC = 0
    ԾఆɿIdentifiability conditions
    1 Exchangeability Ya,c=0 ⊥
    ⊥ (A,C)|L
    2 Positivity for (A = a,C = 0)
    3 Consistency
    38 / 48

    View Slide

  46. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Weighted modelɿ
    E[Y|A,C = 0] = θ0 +θ1A
    Marginal structural model:
    E[Ya,c=0] = β0 +β1a
    WC ʹΑͬͯ࡞ΒΕΔٙࣅूஂͷ N ͸ Censor લͷ
    population ͱಉ͡਺ (N = 1566+63 = 1629)
    L ˠ C ·ͨ͸ A ˠ C ͸ͳ͍
    Selection ͦͷ΋ͷ͕ͳ͍
    39 / 48

    View Slide

  47. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Stabilized IP weights for Censoring
    ܽམʹରͯ͠ Stabilized IP weights ͸࢖͑Δͷʁ
    SWA,C = SWA ×SWC
    SWC =
    Pr[C = 0|A]
    Pr[C = 0|L,A]
    ٙࣅूஂͷ N ͸ Censor ޙͷ population ͱಉ͡਺
    (N = 1566)
    L ˠ C ͸ͳ͍
    Censoring ͸ L ʹґଘ͢ΔܗͰͳ͞ΕΔɻSelection ͸
    ͋Δ͕ Selection bias ͸ͳ͍ɻ
    SWA,C Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ
    θ1 = 3.5kg(2.4,4.5)
    SWA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ
    θ1 = 3.5kg(2.4,4.5)
    WA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ
    θ1 = 3.5kg(2.4,4.5)
    40 / 48

    View Slide

  48. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    41 / 48

    View Slide

  49. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.1 Setting a bad example
    ʮېԎͱମॏ૿Ճʯ͸ສਓʹΘ͔Γ΍ͯ͘͢ศར͕ͩɺ
    Selection bias ͷՄೳੑ͕͋Δѱ͍ྫɻ
    ʮېԎʯͱ͸ʜ
    1 1971-75 ೥ͷϕʔεϥΠϯௐࠪ࣌ʹ٤ԎऀͰ͋Δɻ
    2 1982 ೥ʹېԎ͍ͯ͠Δɻ
    αόΠόϧόΠΞε
    Time-varying treatment (Part 3)
    ηϨΫγϣϯόΠΞεɿTreatment ޙͷΠϕϯτ
    (survey ࢀՃ) Λ΋ͱʹ Censor ͢Δݚڀऀ
    41 / 48

    View Slide

  50. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.2 Checking positivity
    ͱ͋Δ L ͷίϯϏωʔγϣϯͷશһ͕ېԎ͠ͳ͔ͬͨɻ
    ྫɿ66 ࡀɺനਓɺঁੑͷ 4 ਓͱ΋٤ԎܧଓʢPr(A = 1|L) = 0)
    Structural violation
    ͋Δ L ͷ஋Λ΋ͭਓʑ͕ Treatʢ·ͨ͸ Untreat) ͞ΕΔ
    ͜ͱ͕ߏ଄తʹෆՄೳͳ৔߹ɻ
    ྫɿ৬৔Ͱͷༀ෺๫࿐ˠࢮ๢ʹؔ৺͕͋Δέʔεɻ࢓ࣄ
    Λ͍ͯ͠ͳ͍ਓ͸ Treat ͞ΕΔ͜ͱ͕ͳ͍ɻ
    IP Weighting ΍ Standardization ͰҼՌਪ࿦Λߦ͏͜ͱ
    ͸Ͱ͖ͳ͍ɻPositivity ͕୲อ͞Ε؍ଌͰ͖Δ Strata ͷ
    ΈΛݚڀͷର৅ͱ͢Δɻ
    Random violation
    ༗ݶͷαϯϓϧԼʹ͓͍ͯɺ” ͨ·ͨ·” ͍͔ͭ͘ͷ L ͷ
    ίϯϏωʔγϣϯͰ 0 ͕؍ଌ͞ΕΔ৔߹ɻ
    ྫɿ66 ࡀനਓঁੑͱ 67 ࡀനਓঁੑ͸શһ A=0 ͕ͩɺ
    65 ࡀനਓঁੑͱ 69 ࡀനਓঁੑ͸ A=1 ΛؚΉɻ
    Parametric model Λ࢖͏͜ͱͰεϜʔζΞ΢τ͞ΕΔɻ
    Random nonpositivity ͷ Assumption ͕ඞཁɻ
    42 / 48

    View Slide

  51. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    1 12.1 The Causal Question
    2 12.2 Estimating IP wights via modeling
    3 12.3 Stabilized IP weights
    4 12.4 Marginal structural models
    5 12.5 Effect modification and marginal structural
    models
    6 12.6 Censoring and missing data
    7 Fine point
    12.1 Setting a bad example
    12.2 Checking positivity
    8 Technical point
    12.1 Horvitz-Thompson estimators
    12.2 More on stabilized wights
    43 / 48

    View Slide

  52. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.1 Horvitz-Thompson estimators
    Positivity ͱ Exchangeability ͕୲อ͞ΕΔ৔߹ɺ
    E
    I(A = a)Y
    f(A|L)
    IP weighted mean (ch.3)
    = E[Ya]
    Counterfactual mean
    Horvitz-Thompson (1952) estimator:
    ˆ
    E
    I(A = a)Y
    f(A|L)
    Modified Horvitz-Thompson estimator (Robins 1998):
    ˆ
    E I(A=a)Y
    f(A|L)
    ˆ
    E I(A=a)
    f(A|L)
    43 / 48

    View Slide

  53. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    Positivity ͕୲อ͞ΕΔ৔߹,
    E
    I(A = a)
    f(A|L)
    = 1
    ͳͷͰɺ
    E I(A=a)Y
    f(A|L)
    E I(A=a)
    f(A|L)
    = E
    I(A = a)Y
    f(A|L)
    ೋ஋ͷ Y ͷ৔߹ɺ͔ͳΒͣ 0 ͔Β̍ͷ஋ΛͱΔɻ
    44 / 48

    View Slide

  54. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    E I(A=a)Y
    f(A|L)
    E I(A=a)
    f(A|L)
    Positivity ͕୲อ͞Εͳ͍৔߹ɺ
    = ∑
    l
    E[Y|A = a,L = l,L ∈ Q(a)]Pr[L = l|L ∈ Q(a)]
    Exchangeability ͕୲อ͞Εͳ͍৔߹ɺ
    E[Ya|L ∈ Q(a)]
    where Q(a) = l;Pr(A−a|L = l) > 0 is the set of values l for
    which A = a may be observed with positive probability.
    Positivity ͕୲อ͞Εͳ͚Ε͹ɺHorvitz-Thompson
    estimator Ͱ a = 1 ͱ a = 0 ΛൺֱΛߦͬͯ΋ɺҼՌతղऍ͸
    Ͱ͖ͳ͍ɻ
    45 / 48

    View Slide

  55. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    12.2 More on stabilized wights
    SWA =
    f[A]
    f[A|L]

    g[A]
    f[A|L]
    g[A]: A ͷؔ਺͔ͭ L ʹґଘ͠ͳ͍ؔ਺ɻ
    جຊతʹɺ 1
    f[A|L]
    Ͱ͸ͳ͘ g[A]
    f[A|L]
    Λ࢖͏ͱྑ͍ɻ
    Nonsaturated marginal structural model ʹద༻͢ΔࡍɺΑ
    Γ Efficient ͱͳΔɻ
    46 / 48

    View Slide

  56. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    IP weights 1
    f[A|L]
    ͷ৔߹
    E
    I(A = a)Y
    f(A|L)
    IP weighted mean
    = E[Ya]
    Counterfactual mean
    =
    E I(A=a)Y
    f(A|L)
    E I(A=a)
    f(A|L)
    Modified Horvitz-Thompson estimator
    Stabilized IP weights g[A]
    f[A|L]
    ͷ৔߹
    E[Ya] =
    E I(A=a)Y
    f(A|L)
    g(A)
    E I(A=a)
    f(A|L)
    g(A)
    =
    E[Ya]g(A)
    g(A)
    47 / 48

    View Slide

  57. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point
    ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ
    48 / 48

    View Slide