Upgrade to Pro — share decks privately, control downloads, hide ads and more …

IP Weighting and Marginal Structural Models(Cau...

Shuntaro Sato
November 25, 2020

IP Weighting and Marginal Structural Models(Causal inference: What if, Chapter 12)

Keywords: 因果推論, IP Weighting(逆確率重み付け), Stabilized IP weight, Marginal structural models

Shuntaro Sato

November 25, 2020
Tweet

More Decks by Shuntaro Sato

Other Decks in Science

Transcript

  1. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Causal Inference: What If ಡॻձ Chapter 12: IP Weighting and Marginal Structural Models Azusa Matsumoto Reardon August 2, 2020 1 / 48
  2. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 1 / 48
  3. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 2 / 48
  4. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.1 The causal question ېԎˠମॏ૿ྔͷҼՌޮՌ ؍ଌσʔλʹର͠ IP Weighting Λ༻͍Δ 2 / 48
  5. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    σʔλ ถࠃࠃຽ݈߁ӫཆௐࠪ NHEFS/National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study ΞϝϦΧࠃཱӴੜ౷ܭηϯλʔ/National Center for Health Statistics ΞϝϦΧࠃཱ࿝Խݚڀॴ/National Institute on Aging ΞϝϦΧެऺӴੜہ/United States Public Health Service 1971-75 ೥ͷ Baseline ௐࠪˍ 1982 ೥ͷ Follow-up ௐࠪ ؚ·ΕΔαϯϓϧ 25-74 ࡀͷݸਓ Baseline Ͱ٤Ԏ͍ͯ͠Δͱճ౴ ෼ੳʹؚΉม਺ͷ஋ʹܽམ͕ͳ͍ʢˠ 12.6ʣ N = 1566 3 / 48
  6. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ୯७ൺֱ Treatment (A) ېԎ A = 1: Baseline ͱ Follw-up ͷؒʹېԎΛͨ͠ݸਓ A = 0: ্هҎ֎ Outcome (Y) ମॏ૿Ճ Y =(Follow-up ͷମॏ)-(Baseline ͷମॏ) ېԎͨ͠άϧʔϓͷฏۉମॏ૿Ճྔ E[Y|A = 1] = 4.5kg(n = 403) ېԎ͠ͳ͔ͬͨάϧʔϓͷฏۉମॏ૿Ճྔ E[Y|A = 0] = 2.0kg(n = 1163) ୯७ൺֱ͢Δͱʜ E[Y|A = 1]−E[Y|A = 0] = 2.5kg(1.7,3.4) 4 / 48
  7. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ஌Γ͍ͨҼՌޮՌ ͳͥ୯७ൺֱ͡ΌͩΊͳͷ͔? ˠશ͘ҟͳͬͨूஂͷൺֱʹͳͬͯ͠·͏ɻ 5 / 48
  8. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ஌Γ͍ͨҼՌޮՌ ΋͠શһ͕ېԎ͍ͯͨ͠ΒΈΒΕͨͰ͋Ζ͏ฏۉମॏ૿ Ճྔ (൓ࣄ࣮) E[Ya=1] ΋͠શһ͕ېԎ͍ͯ͠ͳ͔ͬͨΒΈΒΕͨͰ͋Ζ͏ฏۉ ମॏ૿Ճྔ (൓ࣄ࣮) E[Ya=0] ஌Γ͍ͨҼՌޮՌ E[Ya=1]−E[Ya=0] ̸= E[Y|A = 1]−E[Y|A = 0] 6 / 48
  9. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Surrogate Confounder ؍ଌͰ͖Δ L ͱ؍ଌͰ͖ͳ͍ U ͕૬ؔ͢ΔɻL Λௐ੔͢΂ ͖͔ʁ L Λௐ੔͢Δ͜ͱͰ A ← U → Y ͷόοΫυΞύεΛ෦෼తʹ ϒϩοΫͰ͖Δ 7 ষͷ Technical Point 7.3 ࢀর ʢA ʹӡಈश׳ɺY=৺ଁ࣬ױɺU ʹࣾձܦࡁతഎܠɺL=ऩೖʣ 7 / 48
  10. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Surrogate Confounder ͜ͷষͰௐ੔͢Δ Confounder 1 ੑผ (0: male, 1: female) 2 ೥ྸ (years) 3 ਓछ (0: white, 1: otherwise) 4 ڭҭྺ (5 ΧςΰϦʔ) 5 ٤Ԏྔ (Ұ೔ʹٵ͏ຊ਺) 6 ٤Ԏྺ (years) 7 ೔ৗతͳӡಈྔ (3 ΧςΰϦʔ) 8 εϙʔπ׆ಈ (3 ΧςΰϦʔ) 9 ମॏ (kg) Ͳͷม਺Λௐ੔͢΂͖͔ʁ ˠʢChapter 18) 8 / 48
  11. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 9 / 48
  12. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.2 Estimating IP wights via modeling IPW Ͱٙࣅूஂ (pseudo-population) Λ࡞Γͩͦ͏ͱͯ͠ ͍Δɻ ΋͠શһ͕ېԎ͍ͯͨ͠Βʁ ΋͠શһ͕ېԎ͍ͯ͠ͳ͔ͬͨΒʁ ٙࣅूஂͷ΋ͭ̎ͭͷੑ࣭ A ͱ L ͕ಠཱ Eps[Y|A = a] ٙࣅूஂͷ mean = ∑ l E[Y|A = a,L = l]Pr[L = l] ࣮ࡍͷूஂͷ standardized mean 9 / 48
  13. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Conditional Exchangeablity Ya ⊥ ⊥ A|L ɹ 1 Conditional Exchangeability ͕੒ΓཱͭͷͰ͋Ε͹ɺ E[Ya] ͸ٙࣅूஂͱ࣮ࡍͷूஂͱ΋ʹಉ͡ͱͳΔɻ 2 ٙࣅूஂͰ Unconditional exchangeability ͕੒Γཱͭɻ ަབྷͳ͠ɻ 3 E[Ya] ൓ࣄ࣮ੈքͷฏۉ஋ = Eps[Y|A = a] ٙࣅूஂͷฏۉ஋ 4 Αͬͯɺٙࣅूஂʹ͓͚Δ૬ؔ͸ҼՌؔ܎ͱղऍͰ͖Δɻ 10 / 48
  14. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ٙࣅूஂͷͭ͘Γ͔ͨ Ͳ͏΍ͬͯͦΜͳٙࣅूஂΛͭ͘Δͷʁ ˠ Treatment level Λݸਓ͕ड͚Δ֬཰ (conditional on L) ͷ ٯ਺Λ weight ͱͯ͠࢖͏ L Ͱ৚݅෇͚ͨېԎ͢Δ֬཰ Pr[A = 1|L] L Ͱ৚݅෇͚ͨېԎ͠ͳ͍֬཰ Pr[A = 0|L] = 1−Pr[A = 1|L] Treatment A ʹର͢Δݸਓͷ IP weight WA = 1 f(A|L) L Ͱ৚݅෇͚ͨېԎ͢Δ֬཰ 11 / 48
  15. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ٙࣅूஂͷͭ͘Γ͔ͨ Figure 2.1 2 ষͰ͸ Causally interpreted tree Ͱ non-parametrically ʹܭࢉͨ͠ɻ ࠓճͷΑ͏ͳߴ࣍ݩͳσʔλͩͱɺେมͳ͜ͱʹͳͬͯ ͠·͏ʂ 9 confounders, up to 6 levels, 2 million branches! ͦ͏ͩɺϞσϧʹཔΖ͏ɻ 12 / 48
  16. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    εςοϓ 1 ͸͡ΊʹɺPr[A = 1|L] Λ Parametric ʹਪܭ ˆ Pr[A = 1|L] Λ 1566 ਓͷ͢΂ͯͷ L ͷ஋ͷίϯϏωʔγϣϯ ͰٻΊΔ ੍໿ ࿈ଓม਺͸ Linearʢ௚ઢؔ܎ʣͱ quadratic termʢೋ࣍ ؔ਺తʣ No product term ʢަޓ࡞༻Λߟྀ͠ͳ͍ɺ Unsaturatedʣ IP weights (WA) ͷฏۉ: 2.00(min : 1.05,max : 16.7) 13 / 48
  17. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    εςοϓ 2 IP weights ʹΑͬͯ࡞ΒΕͨٙࣅूஂʹ͓͚Δࠩ ˆ Eps[Y|A = 1]− ˆ Eps[Y|A = 0] ஌Γ͍ͨҼՌޮՌ E[Ya=1]−E[Ya=0] IP weights (WA) ʹΑͬͯ࡞ΒΕͨٙࣅूஂʹ͓͚Δࠩ͸஌ Γ͍ͨҼՌޮՌͱͳΔɻ ٙࣅूஂͷ A ʹަབྷ͕ͳ͍ Pr[A = 1|L] ͷϞσϧ͕ਖ਼͍͠ 14 / 48
  18. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ·ͱΊ Weighted Least Squares E[Y|A] = θ0 +θ1A ېԎͨ͠ਓͷ Estimated IP weights ˆ W 1 ˆ Pr[A = 1|L] ېԎ͠ͳ͔ͬͨਓͷ Estimated IP weights ˆ W 1 1− ˆ Pr[A = 1|L] ˆ θ1 = 3.4kg(2.4,4.5) ... ېԎ͢Δ͜ͱͰ૿͑Δମॏ 15 / 48
  19. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Confidence Interval Weights Λߟྀͨ͠ CI ͸Ͳ͏΍ͬͯٻΊΔͷʁ 1 ౷ܭཧ࿦ʹج͖ͮରԠ͢Δ Variance Λͭ͘Δ ଟ͘ͷ౷ܭιϑτ͕ѻ͍ͬͯͳ͍ɻ 2 Nonparametric boostrap Ͱۙࣅˠ Technical Point 3.1 Ϛγϯύϫʔ͕ඞཁ 3 Robust variance อकతͰଟ͘ͷ౷ܭιϑτͰ͸σϑΥϧτͰઃఆ͞Εͯ ͍Δ ͜ͷষͷ CI ͸͢΂ͯ (3) Pr[A = 1|L] ͷϞσϧ͕ਖ਼͘͠ͳ͍৔߹ɺθ0 ͱ θ1 ʹόΠΞεɺ CI ͕ਅ࣮ͷ஋ΛؚΉ֬཰͸ 95 ˋͱͳΒͳ͍ 16 / 48
  20. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 17 / 48
  21. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.3 Stabilized IP weights IP weights WA = 1 f(A|L) ͸ɺStudy population શһͷίϐʔ Λ̎ͭ࡞Δɻ Expected mean of the weights WA = 2 17 / 48
  22. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ͸ΜͿΜ͜ ΄͔ͷ΍Γ͔ͨ΋͋Δ YOɻͨͱ͑͹͜Μͳٙࣅूஂ Pseudo-population with P = 0.5 (Probability of receiving A = 1) = 0.5 (Probability of receiving A = 0) = 0.5 IP weights: 0.5 f(A|L) ਺ֶతʹ͸ɺ͜Ε·Ͱͷ Pseudo-population(̎ͭίϐʔ ͨ͠৔߹) ͷ weight Λ̎Ͱׂͬͨ΋ͷͱಉ͡ Expected mean of the weights WA= 1 Effect estimate ΋ಉ͡ ଞͷ֬཰ p f(A|L) 0 < p ≤ 1 Ͱ͋Ε͹ɺͲΕ΋ಉ͡ ˠ Tehnical Point 12.2 18 / 48
  23. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ٙࣅूஂʹඞཁͳͷ͸ɺTreatment A ͱ Confounder L ͕ಠ ཱͰ͋Δ͜ͱɻTreatment A Λड͚Δ֬཰ p ͷ஋͕ L ʹґଘ ͠ͳ͍ͷͰ͋Ε͹ɺͲΜͳ஋Ͱ΋໰୊ͳ͍ɻ Α͘࢖ΘΕΔͷ͸ݩͷूஂͷ A ͷׂ߹ɿ f(A) f(A|L) Treated: Pr[A = 1] in the original population = 0.257(403/1566) Pr[A = 1] f(A|L) Untreated: Pr[A = 0] = in the original population = 0.743(1163/1566) Pr[A = 0] f(A|L) 19 / 48
  24. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Ծ૝ͷϥϯμϜԽ࣮ݧ ୈ 2 ষ Figure 2.1 ͷσʔλͷ৔߹ Stabilized IP weights: f(A) f(A|L) Pr[A = 1] = 13 20 = 0.65 Pr[A = 0] = 7 20 = 0.35 ͜ͷ̓ٙࣅूஂ͕໛฿͢Δ ɹ 65% ͕ A = 1 ɹ 35% ͕ A = 0 ͷԾ૝ͷϥϯμϜԽ࣮ݧ 20 / 48 Figure 12.1
  25. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Weight ʹΑΔҧ͍ Type Weight Min. Max. Mean Nonstabilized weights WA = 1 f(A|L) 1.05 16.7 2 Stabilized weights SWA = f(A) f(A|L) 0.33 4.30 1 Stabilized weights ͷ΄͏͕Ϩϯδ͕ڱ͍ 21 / 48
  26. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ېԎͱମॏ૿ՃͷέʔεͰ SWA (stabilized weights) Λ࢖ͬ ͯܭࢉ͠ͳ͓ͯ͠ΈΑ͏ɻ 1 ෼฼ Pr[A = 1|L] ϩδεςΟοΫճؼͰ Study population 1566 ਓͷ conditional probability ΛٻΊΔʢSection 12.2 ͱಉ͡ʣ 2 ෼ࢠ Pr[A = 1] 403 1566 Saturated logistic model 3 ҼՌޮՌ E[Ya=1]−E[Ya=0] E[Y|A] = θ0 +θ1A ېԎऀͷ SWA: ˆ Pr[A=1] ˆ Pr[A=1|L] ඇېԎऀͷ SWA: (1− ˆ Pr[A=1]) (1− ˆ Pr[A=1|L]) SWA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ θ1 = 3.5kg(2.4,4.5) WA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ θ1 = 3.5kg(2.4,4.5) 22 / 48
  27. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ಉ݁͡ՌʹͳΔͳΒɺͳΜͰ Stabilized weights Λ͔ͭ ͏ͷʁ ˠ Unsaturated ͷ৔߹ɺConfidence Interval ͕ Narrow ʹ ͳΔɻ Time-varying treatment ΍ continuous treatment ͳͲͰ͸ɺ શͯͷόϦΤʔγϣϯΛϞσϧʹՃ͑Δ͜ͱ͸ݱ࣮తͰ͸ ͳ͍ɻ ͜Ε·ͰͷྫͰ͸ɺTreatment A ͸ 2 ஋͔͠ͱΕͳ͔ͬͨ (Saturated) E[Y|A] = θ0 +θ1A Continuous treatment ͷ৔߹ (ˠ TP12.2) 23 / 48
  28. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 24 / 48
  29. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.4 Marginal structural models Marginal Structural Mean Model: Outcome ͕ unobservable ݱ࣮ͷσʔλͰϑΟοτ͢Δ͜ͱ͸Ͱ͖ͳ͍ɻ E[Ya] ൓ࣄ࣮ = β0 +β1a a = 0ʢېԎ͠ͳ͍ʣ ͱ͖... E[Ya] = β0 a = 1ʢېԎ͢Δʣ ɹͱ͖... E[Ya] = β0 +β1 β1 = E[Ya=1]−E[Ya=0] 24 / 48
  30. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Marginal structural models IP weight ͰٙࣅूஂΛ࡞ΓɺWLS ͰϑΟοτ E[Y|A] = θ0 +θ1A ੍໿ʢAssumptionʣͷ΋ͱɺٙࣅूஂͰͷ૬ؔ͸ҼՌؔ܎ͱ ղऍͰ͖Δɻ ٙࣅूஂͷ૬ؔ ˆ θ1 ˣ ҼՌޮՌ β1 = E[Ya=1]−E[Ya=0] 25 / 48
  31. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Continuous treatment ͜Ε·Ͱͷ Treatment (A) ͸ೋ஋ (1: ېԎͨ͠ɺ0: ͠ͳ͔ͬͨʣ E[Ya] = β0 +β1a Ϟσϧ͔ΒશͯͷόϦΤʔγϣϯ͕ਪఆͰ͖Δɻ(Saturated) ࠨลͷ unknownɿE[Ya=1],E[Ya=1] ӈลͷ unknownɿβ0,β1 Treatment A ͕࿈ଓม਺ͷ৔߹͸ʁ ৽͍͠ Treatment: ٤ԎྔͷมԽ A = (1 ೔ͷλόί٤Ԏຊ਺ɿfollow-up) ɹ − (1 ೔ͷλόί٤Ԏຊ਺ɿbaseline) ର৅αϯϓϧɿϕʔεϥΠϯͰͷ 1 ೔٤Ԏຊ਺͕ 25 ຊ ҎԼͷݸਓʢN=1162ʣ 26 / 48
  32. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Continuous Treatment ஌Γ͍ͨҼՌޮՌɿ E[Ya]−E[Ya′ ] Marginal structural model: E[Ya] = β0 +β1a+β2a2 a2 = a×a β0 = E[Ya=0] a = 0ʢ٤Ԏྔ͕มΘΒͳ͔ͬͨ৔߹ʣͷฏۉମॏ૿Ճྔɻ 27 / 48
  33. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ஌Γ͍ͨҼՌޮՌɿ E[Ya]−E[Ya′ ] Marginal structural model: E[Ya] = β0 +β1a+β2a2 ྫɿ1 ೔ 20 ຊ૿͑ͨਓͱมΘΒͳ͔ͬͨਓͷൺֱ: E[Ya=20]−E[Ya=0] β0 Marginal structural model: E[Ya=20] = β0 +20β1 +400β2 E[Ya=20]−E[Ya=0] = 20β1 +400β2 ඞཁͳͷ͸ β1 ͱ β2 28 / 48
  34. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ࣍ͷεςοϓɿIP weights ͰٙࣅूஂΛ࡞ͬͯϞσϧʹ ϑΟοτ͠Α͏ɻ E[Y|A] = θ0 +θ1A+θ2A2 Stabilized weight (SWA) = f(A) f(A|L) ΛٻΊΔʹ͸ʜ ೋ஋ͷ A ͷ৔߹͸ logistic model Ͱ Pr[A = 1|L] Λٻ Ίͨ ࿈ଓͷ A ͷ৔߹͸ Probability density function (PDF) PDF ʹର͢ΔԾఆ f(A|L): Normal (Gaussian) with mean µL = E[A|L] f(A|L): Constant variance σ2 f(A): Normal (Gaussian) Estimated SWA: min=0.19, max=5.10, mean=1.00 29 / 48
  35. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Marginal structural model: E[Ya] = β0 +β1a+β2a2 ݁Ռɻ ˆ β0 = 2.005 ˆ β1 = −0.109 ˆ β2 = 0.003 ΋͠٤ԎྔΛม͑ͳ͔ͬͨΒˠ 2.0kg(1.4,3.5) ΋͠٤ԎྔΛ 1 ೔ 20 ຊ૿΍ͨ͠Βˠ 0.9kg(−1.7,3.5) 30 / 48
  36. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ೋ஋ͷΞ΢τΧϜͷ৔߹ ৽͍͠ೋ஋ͷΞ΢τΧϜɿېԎͱࢮ๢ ېԎ (A)1992 ೥·Ͱʹ A = 1: ېԎͨ͠, A = 0: ېԎ͠ͳ͔ͬͨ ࢮ๢ (D)1992 ೥·Ͱʹ D = 1: ࢮ๢ͨ͠, D = 0: ࢮ๢͠ͳ͔ͬͨ Marginal structural logistic model logitPr[Da = 1] = α0 +α1a IP weight Ͱ࡞ͬͨٙࣅूஂͰਪܭ logitPr[D = 1|A] = θ0 +θ1A exp( ˆ θ1) = 1.0(0.8,1.4) Causal odds ratio 31 / 48
  37. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 32 / 48
  38. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.5 Effect modification and marginal structural models Covariates ʹ͍ͭͯɿ ݚڀͷλʔήοτͱ͢Δ parameter ͕ average causal effect Ͱ͋Δ৔߹͸جຊՃ͑ͳ͍ɻ Effect modification ʹؔ৺͕͋Δ৔߹͸Ճ͑Δɻ ݟ͍ͨ΋ͷɿV ͷϨϕϧؒͰͷ Treatment ͷޮՌͷҧ͍ɻ ྫɿېԎͷޮՌ͸உঁͰҧ͏͔ʁ sex V (1: woman, 0: man) E[Ya|V] = β0 +β1a+β2Va+β3V V ͰίϯσΟγϣϯͯ͠͠·͍ͬͯΔͷͰɺݫີʹ ͸”marginal model” Ͱ͸ͳ͍ɻ IPW Ͱௐ੔ͯ͠ϑΟοτɿ E[Y|A,V] = θ0 +θ1A+θ2VA+θ3V 32 / 48
  39. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ஫ҙ WA ·ͨ͸ SWA ΛٻΊΔࡍɺcovariates L ʹ V Λ௥Ճ͢Δඞ ཁ͕͋Δɻ V ͕ confounder Ͱ͸ͳ͍৔߹΋௥Ճ͸ඞཁɻ SWA ͷ෼ࢠɺ f[A] Λ࢖͏΂͖͔ f[A|V] Λ࢖͏΂͖͔ʁ SWA(V) = f[A|V] f[A|L] V ΛՃ͑Δͱ CI ͕ڱ͘ͳΔɻ෼ࢠͱ෼฼Ͱ V ͕ variation Λ ٵऩ͢Δˠ SWA ͷϨϯδڱ͘ͳΔˠ narrow CI 33 / 48
  40. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Covarite L ʹՃ͑Δαϒηοτ V ʹؔͯ͠͸ɺݚڀऀ͕ 1 Effect modifier Ͱ͋Δͱڧ͘ߟ͑Δ 2 ର৅ʹڧ͍ؔ৺͕͋Δʢશମͷूஂͦͷ΋ͷΑΓ΋ʣ ৔߹ʹݶΔ΂͖ɻ Τηपลߏ଄Ϟσϧ (faux marginal structural model) ΋͢͠΂ͯͷม਺ L Λ marginal structural model ʹՃ͑ͨ ͱͨ͠ΒɺSWA(L) = 1 ͱͳΓɺͦ΋ͦ΋ IPW ͢Δඞཁ΋ͳ ͍ɻී௨ʹ L ͍ΕͯճؼΛճ͚ͩ͢Ͱ OK Confouder ͷௐ੔ͱ Effect modification ͸ผ෺ 2 ͭͷ Treatment A ͱ B ͷަޓ࡞༻ʹؔ৺͕͋Δ৔߹ A ͱ B ͷύϥϝʔλʔͲͪΒ΋ marginal structural model ʹೖΕΔ IP weights ͷ෼฼͸ Treatment A ͱ B ͷ joint probabilityPr(A∩B) Exchangeability, positivity, consistency ͷԾఆ͕ඞཁ 34 / 48
  41. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 35 / 48
  42. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.6 Censoring and missing data ܽམม਺ N = 1566: 1982 ೥ͷϑΥϩʔΞοϓௐࠪ࣌ͷମॏͷσʔλ͕ ܽམ͍ͯ͠Δ 63 ਓ͕আ֎ (censoring) ͞Ε͍ͯΔɻ ˠ Selection bias ͷՄೳੑ͕͋Δ Censoring Censoring (C): 1982 ೥ͷମॏଌఆ C = 1: ମॏଌఆ͞Εͳ͔ͬͨʢআ֎͞Εͨʣ C = 0: ମॏଌఆ͞Εͨʢআ֎͞Εͳ͔ͬͨʣ ͜Ε·Ͱͷ෼ੳʢ12.2, 12.4ʣ ɺ࣮͸... E[Y|A] = θ0 +θ1A E[Y|A,C = 0] = θ0 +θ1A 35 / 48
  43. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    36 / 48 আ֎͞Εͳ͔ͬͨݸਓ (c = 0) ͚ͩΛର৅ͱ͢ΔͱɺC ͕ A ͱ Y ͷ Collider ͋Δ͍͸ Collider ͷࢠଙͰ͋Δ৔߹ʹɺόΠ ΞεͷڪΕ͕͋Δɻ
  44. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Example data Ͱ͸໰୊͋Γͦ͏ɻ Treatment A ͱ C ʹ૬ؔ: ېԎऀ (A = 1) ͷ 5.8 ˋ͕ Censored ൱ېԎऀ (A = 0) ͷ 3.2 ˋ͕ Censored Y ͷ predictor ͱ C ʹ૬ؔɿϕʔεϥΠϯ࣌ͷମॏ আ֎ऀ (C = 1) 76.6kg ൱আ֎ऀ (C = 0) 70.8kg ஌Γ͍ͨҼՌޮՌɿA ͱ C ͷ joint effect E[Ya=1,c=0] શһېԎˍআ֎ͳ͠ − E[Ya=0,c=0] શһ൱ېԎˍআ֎ͳ͠ 37 / 48
  45. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    ͲΜͳ IP weight Λ࢖͏ͷ͔ʁ WA,C = WA ×WC আ֎͞Εͳ͔ͬͨਓͷ WC = 1 Pr[C=0|L,A] আ֎͞Εͨਓͷɹɹɹ WC = 0 ԾఆɿIdentifiability conditions 1 Exchangeability Ya,c=0 ⊥ ⊥ (A,C)|L 2 Positivity for (A = a,C = 0) 3 Consistency 38 / 48
  46. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Weighted modelɿ E[Y|A,C = 0] = θ0 +θ1A Marginal structural model: E[Ya,c=0] = β0 +β1a WC ʹΑͬͯ࡞ΒΕΔٙࣅूஂͷ N ͸ Censor લͷ population ͱಉ͡਺ (N = 1566+63 = 1629) L ˠ C ·ͨ͸ A ˠ C ͸ͳ͍ Selection ͦͷ΋ͷ͕ͳ͍ 39 / 48
  47. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Stabilized IP weights for Censoring ܽམʹରͯ͠ Stabilized IP weights ͸࢖͑Δͷʁ SWA,C = SWA ×SWC SWC = Pr[C = 0|A] Pr[C = 0|L,A] ٙࣅूஂͷ N ͸ Censor ޙͷ population ͱಉ͡਺ (N = 1566) L ˠ C ͸ͳ͍ Censoring ͸ L ʹґଘ͢ΔܗͰͳ͞ΕΔɻSelection ͸ ͋Δ͕ Selection bias ͸ͳ͍ɻ SWA,C Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ θ1 = 3.5kg(2.4,4.5) SWA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ θ1 = 3.5kg(2.4,4.5) WA Λ࢖ͬͨͱ͖ͷ݁Ռɿ ˆ θ1 = 3.5kg(2.4,4.5) 40 / 48
  48. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 41 / 48
  49. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.1 Setting a bad example ʮېԎͱମॏ૿Ճʯ͸ສਓʹΘ͔Γ΍ͯ͘͢ศར͕ͩɺ Selection bias ͷՄೳੑ͕͋Δѱ͍ྫɻ ʮېԎʯͱ͸ʜ 1 1971-75 ೥ͷϕʔεϥΠϯௐࠪ࣌ʹ٤ԎऀͰ͋Δɻ 2 1982 ೥ʹېԎ͍ͯ͠Δɻ αόΠόϧόΠΞε Time-varying treatment (Part 3) ηϨΫγϣϯόΠΞεɿTreatment ޙͷΠϕϯτ (survey ࢀՃ) Λ΋ͱʹ Censor ͢Δݚڀऀ 41 / 48
  50. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.2 Checking positivity ͱ͋Δ L ͷίϯϏωʔγϣϯͷશһ͕ېԎ͠ͳ͔ͬͨɻ ྫɿ66 ࡀɺനਓɺঁੑͷ 4 ਓͱ΋٤ԎܧଓʢPr(A = 1|L) = 0) Structural violation ͋Δ L ͷ஋Λ΋ͭਓʑ͕ Treatʢ·ͨ͸ Untreat) ͞ΕΔ ͜ͱ͕ߏ଄తʹෆՄೳͳ৔߹ɻ ྫɿ৬৔Ͱͷༀ෺๫࿐ˠࢮ๢ʹؔ৺͕͋Δέʔεɻ࢓ࣄ Λ͍ͯ͠ͳ͍ਓ͸ Treat ͞ΕΔ͜ͱ͕ͳ͍ɻ IP Weighting ΍ Standardization ͰҼՌਪ࿦Λߦ͏͜ͱ ͸Ͱ͖ͳ͍ɻPositivity ͕୲อ͞Ε؍ଌͰ͖Δ Strata ͷ ΈΛݚڀͷର৅ͱ͢Δɻ Random violation ༗ݶͷαϯϓϧԼʹ͓͍ͯɺ” ͨ·ͨ·” ͍͔ͭ͘ͷ L ͷ ίϯϏωʔγϣϯͰ 0 ͕؍ଌ͞ΕΔ৔߹ɻ ྫɿ66 ࡀനਓঁੑͱ 67 ࡀനਓঁੑ͸શһ A=0 ͕ͩɺ 65 ࡀനਓঁੑͱ 69 ࡀനਓঁੑ͸ A=1 ΛؚΉɻ Parametric model Λ࢖͏͜ͱͰεϜʔζΞ΢τ͞ΕΔɻ Random nonpositivity ͷ Assumption ͕ඞཁɻ 42 / 48
  51. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    1 12.1 The Causal Question 2 12.2 Estimating IP wights via modeling 3 12.3 Stabilized IP weights 4 12.4 Marginal structural models 5 12.5 Effect modification and marginal structural models 6 12.6 Censoring and missing data 7 Fine point 12.1 Setting a bad example 12.2 Checking positivity 8 Technical point 12.1 Horvitz-Thompson estimators 12.2 More on stabilized wights 43 / 48
  52. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.1 Horvitz-Thompson estimators Positivity ͱ Exchangeability ͕୲อ͞ΕΔ৔߹ɺ E I(A = a)Y f(A|L) IP weighted mean (ch.3) = E[Ya] Counterfactual mean Horvitz-Thompson (1952) estimator: ˆ E I(A = a)Y f(A|L) Modified Horvitz-Thompson estimator (Robins 1998): ˆ E I(A=a)Y f(A|L) ˆ E I(A=a) f(A|L) 43 / 48
  53. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    Positivity ͕୲อ͞ΕΔ৔߹, E I(A = a) f(A|L) = 1 ͳͷͰɺ E I(A=a)Y f(A|L) E I(A=a) f(A|L) = E I(A = a)Y f(A|L) ೋ஋ͷ Y ͷ৔߹ɺ͔ͳΒͣ 0 ͔Β̍ͷ஋ΛͱΔɻ 44 / 48
  54. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    E I(A=a)Y f(A|L) E I(A=a) f(A|L) Positivity ͕୲อ͞Εͳ͍৔߹ɺ = ∑ l E[Y|A = a,L = l,L ∈ Q(a)]Pr[L = l|L ∈ Q(a)] Exchangeability ͕୲อ͞Εͳ͍৔߹ɺ E[Ya|L ∈ Q(a)] where Q(a) = l;Pr(A−a|L = l) > 0 is the set of values l for which A = a may be observed with positive probability. Positivity ͕୲อ͞Εͳ͚Ε͹ɺHorvitz-Thompson estimator Ͱ a = 1 ͱ a = 0 ΛൺֱΛߦͬͯ΋ɺҼՌతղऍ͸ Ͱ͖ͳ͍ɻ 45 / 48
  55. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    12.2 More on stabilized wights SWA = f[A] f[A|L] ⇒ g[A] f[A|L] g[A]: A ͷؔ਺͔ͭ L ʹґଘ͠ͳ͍ؔ਺ɻ جຊతʹɺ 1 f[A|L] Ͱ͸ͳ͘ g[A] f[A|L] Λ࢖͏ͱྑ͍ɻ Nonsaturated marginal structural model ʹద༻͢ΔࡍɺΑ Γ Efficient ͱͳΔɻ 46 / 48
  56. 12.1 12.2 12.3 12.4 12.5 12.6 Fine point Technical point

    IP weights 1 f[A|L] ͷ৔߹ E I(A = a)Y f(A|L) IP weighted mean = E[Ya] Counterfactual mean = E I(A=a)Y f(A|L) E I(A=a) f(A|L) Modified Horvitz-Thompson estimator Stabilized IP weights g[A] f[A|L] ͷ৔߹ E[Ya] = E I(A=a)Y f(A|L) g(A) E I(A=a) f(A|L) g(A) = E[Ya]g(A) g(A) 47 / 48