Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
検索拡張生成(RAG)をAWSで作る方法
Search
そのだ
April 24, 2024
Technology
1
370
検索拡張生成(RAG)をAWSで作る方法
【connpass】
Fusic Tech Live Vol.19 機械学習~生成AI編(言語・音声)~
https://fusic.connpass.com/event/310627/
そのだ
April 24, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
350
AWSでRAGを作る方法
sonoda_mj
1
320
緑一色アーキテクチャ
sonoda_mj
1
180
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
640
BedrockのToo Many Request解決してみた
sonoda_mj
2
2.3k
AmazonBedrockを使用した自作RAGの作り方
sonoda_mj
1
930
会社の公開ページとKnowledge Base for Amazon Bedrockを使ってRAG作ってみた
sonoda_mj
0
280
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
sonoda_mj
1
950
Step Functionsを使ってノーコードでDynamoDBにPutItemしてみた
sonoda_mj
2
470
Other Decks in Technology
See All in Technology
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
110
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
170
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
180
The Role of Developer Relations in AI Product Success.
giftojabu1
0
130
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
280
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
130
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
360
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
2
520
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.4k
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Done Done
chrislema
181
16k
Navigating Team Friction
lara
183
14k
Site-Speed That Sticks
csswizardry
0
26
Happy Clients
brianwarren
98
6.7k
Embracing the Ebb and Flow
colly
84
4.5k
Fireside Chat
paigeccino
34
3k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
GraphQLとの向き合い方2022年版
quramy
43
13k
Transcript
©Fusic Co., Ltd. 1 検索拡張⽣成(RAG)をAWSで作る⽅法 2024.4.24 苑⽥ 朝彰 @sonoda_mj Fusic
Tech Live Vol.19
©Fusic Co., Ltd. 2 苑⽥ 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 Community Builders(ML & GenAI) コメント 最近AWS StepFunctionsにハマってる ⾃⼰紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 3 CONTENTS ⽬次 1. 検索拡張⽣成(RAG)とは 2. RAGをAWSで作ってみる
3. まとめ
©Fusic Co., Ltd. 4 検索拡張⽣成(RAG)とは 1
©Fusic Co., Ltd. 5 Retrieval Augmented Generation(RAG) ⽣成系の⾔語 AI モデルに外部メモリをつけるというコンセプトのことを指す
検索拡張⽣成(RAG)とは Vector Database LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
©Fusic Co., Ltd. 6 事前に学習したデータに関しては返答することができる 検索拡張⽣成(RAG)とは LLM AWSについて教えて AWSってのはな
©Fusic Co., Ltd. 7 しかし、プライベート情報や新しい情報など、学習していない内容に関しては答 えられない 検索拡張⽣成(RAG)とは 苑⽥について教えて 私の知識はxxxx年まででぇ LLM
©Fusic Co., Ltd. 8 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に 関する回答を⽣成することができる 検索拡張⽣成(RAG)とは Vector Database 苑⽥について教えて
©Fusic Co., Ltd. 9 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に 関する回答を⽣成することができる 検索拡張⽣成(RAG)とは Vector Database 苑⽥について教えて
©Fusic Co., Ltd. 10 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に 関する回答を⽣成することができる 検索拡張⽣成(RAG)とは Vector Database 検索結果を返す
©Fusic Co., Ltd. 11 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に 関する回答を⽣成することができる 検索拡張⽣成(RAG)とは Vector Database 苑⽥ってのは…
©Fusic Co., Ltd. 12 Fusicの公開情報から構成されるRAG Fusic-RAG メンバー紹介 ニュース 開発事例 その他
©Fusic Co., Ltd. 13 RAGはどういう処理を⾏っているのか 1. 質問をベクトル化する 2. ベクトル化した質問を元に、Vector DBから似ているベク
トル(上位n個)を探す 3. 検索結果と質問からプロンプトを作成 4. LLMにプロンプトを投げる
©Fusic Co., Ltd. 14 今回の登場⼈物 User Embedding Model Vector DB
LLM 質問をする⼈ テキストをベクトル にするモデル ベクトル⽤のDB テキストを⽣成する モデル
©Fusic Co., Ltd. 15 Vector DBにデータを⼊れる AWSを業務で使っています。 テキストを ベクトル化する Vector
DB Embedding Model LLM データソース
©Fusic Co., Ltd. 16 Vector DBにデータを⼊れる [0.1, 0.5, 0,3 …]
Vector DB Embedding Model LLM データソース
©Fusic Co., Ltd. 17 Vector DBにデータを⼊れる ≈≈ { [0.1, 0.5,
0,3 …] metadata: { text: AWSを業務で使っています。 dataSource: sonoda.md } } Vector DB Embedding Model LLM データソース
©Fusic Co., Ltd. 18 1. 質問をベクトル化する 苑⽥さんって誰ですか? Vector DB Embedding
Model LLM
©Fusic Co., Ltd. 19 1. 質問をベクトル化する [0.1, 0.5, 0,3 …]
Vector DB Embedding Model LLM
©Fusic Co., Ltd. 20 2. ベクトル化した質問を元に、Vector DBから似ているベクトルを探す [0.1, 0.5, 0,3
…]に似ている ベクトルを探す Vector DB Embedding Model LLM
©Fusic Co., Ltd. 21 2. ベクトル化した質問を元に、Vector DBから似ているベクトルを探す { [0.1, 0.5,
0,3 …] metadata: { text: AWSを業務で使っています。 dataSource: sonoda.md } } 似てるのあったわ Vector DB LLM
©Fusic Co., Ltd. 22 Embedding Model 3. 検索結果と質問からプロンプトを作成 あなたはhogehogeです 以下の質問に答えてください
# 情報 AWSを業務で使っています。 # 質問 苑⽥さんって誰ですか? Vector DB LLM
©Fusic Co., Ltd. 23 Embedding Model 4. LLMにプロンプトを投げる Vector DB
LLM あなたはhogehogeです 以下の質問に答えてください # 情報 AWSを業務で使っています。 # 質問 苑⽥さんって誰ですか?
©Fusic Co., Ltd. 24 4. LLMにプロンプトを投げる AWSを業務で使ってます Vector DB Embedding
Model LLM
©Fusic Co., Ltd. 25 会話履歴も⼊れてみる 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 詳細とは何でしょうか? 苑田とは誰ですか?
AWSエンジニアです 詳細を教えてください 彼はAWSだけではなく、Rubyも書ける ようです。緑のタイツを着ています。 会話履歴を使⽤しない場合 会話履歴を使⽤した場合
©Fusic Co., Ltd. 26 RAGをAWSで作ってみた 2
©Fusic Co., Ltd. 27 AI21 Labs、Anthropic、Cohere、Meta、Stability AI、Amazon などの⼤⼿ AI 企業が提供する⾼性
能な基盤モデル (FM) を単⼀の API で選択できるフルマネージド型サービス Amazon Bedrockとは
©Fusic Co., Ltd. 28 RAGはどういう処理を⾏っているのか(再掲) 1. 質問をベクトル化する 2. ベクトル化した質問を元に、Vector DBから似ているベク
トル(上位n個)を探す 3. 検索結果と質問からプロンプトを作成 4. LLMにプロンプトを投げる
©Fusic Co., Ltd. 29 RAGはどういう処理を⾏っているのか(再掲) 1. 質問をベクトル化する 2. ベクトル化した質問を元に、Vector DBから似ているベク
トル(上位n個)を探す 3. 検索結果と質問からプロンプトを作成 4. LLMにプロンプトを投げる 簡単に作成できる!!
©Fusic Co., Ltd. 30 Amazon Bedrock 内から基盤モデルをデータソースに接続して、検索拡張⽣成 (RAG) を⾏うことができる。 Knowledge
Base for Amazon Bedrock Bedrock LLM Bedrock Embedding Model Vector DB Data Source or or or S3 様々なデータを⼊れる .txt, .md, .html, .doc/docx .csv, .xls/.xlsx, .pdf
©Fusic Co., Ltd. 31 Knowledge Base for Amazon Bedrock(Pythonでの使い⽅)
©Fusic Co., Ltd. 32 AWSで作成した場合の構成図 or
©Fusic Co., Ltd. 33 AWSで作成した場合の構成図 or フロントエンド (アプリ、Slackなど)
©Fusic Co., Ltd. 34 AWSで作成した場合の構成図 or Knowledge Base for Amazon
Bedrock RAGを簡単に使⽤できる
©Fusic Co., Ltd. 35 AWSで作成した場合の構成図 or AWS Lambda サーバーレスでKBを呼び出す
©Fusic Co., Ltd. 36 AWSで作成した場合の構成図 or Pinecone(VectorDB) Freeプランを使⽤すると無料で検証できる
©Fusic Co., Ltd. 37 AWSで作成した場合の構成図 or DynamoDB 会話ログを保管する
©Fusic Co., Ltd. 38 実際の流れ or
©Fusic Co., Ltd. 39 実際の流れ or 苑⽥って誰ですか?
©Fusic Co., Ltd. 40 実際の流れ or RAGの処理 会話ログの保存 RAGの処理 1.
質問をベクトル化する 2. ベクトル化した質問を元に、 Vector DBから似ているベクトル (上位n個)を探す 3. 検索結果と質問からプロンプトを 作成 4. LLMにプロンプトを投げる 5. 回答を受け取る
©Fusic Co., Ltd. 41 実際の流れ or 苑⽥ってのはな
©Fusic Co., Ltd. 42 まとめ 3
©Fusic Co., Ltd. 43 まとめ 検索拡張⽣成(RAG)は、⾔語AIモデルに外部メモリを付けることで、未学習データにも対応可能にする技術。 Point 01 AWSではKnowledge Base
for Amazon Bedrockを活⽤することでRAGを簡単に実装可能。 Point 02 サーバレスで構築することで、格安で検証可能。 Point 03
©Fusic Co., Ltd. 44 Thank You We are Hiring! https://recruit.fusic.co.jp/
ご清聴いただきありがとうございました