Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Video Propagation Networks

Video Propagation Networks

A presentation I gave about Video Propagation Networks at the 2018 edition of the "Advanced Methods in Computer Grpahics" Seminar at ETH Zurich.

See the original paper here: https://ps.is.tue.mpg.de/publications/vpn-cvpr17

Marcel Neidinger

March 23, 2018
Tweet

More Decks by Marcel Neidinger

Other Decks in Research

Transcript

  1. Beamerkalibrierungsuntersuchungstestvortragsfolie
    Quadrat
    Auflösung: 1920x1080
    Stern in den Ecken zu sehen?
    Sowas wie 16:9? Nein? Soweit wie man es von Beamern erwarten kann?
    Quadrat quadratisch?
    Graustufen korrekt?

    View Slide

  2. View Slide

  3. „Talk is cheap - Show me the video“
    - Linus Torvalds,
    Mastermind behind Linux

    View Slide

  4. Demo

    View Slide

  5. View Slide

  6. View Slide

  7. View Slide

  8. View Slide

  9. View Slide

  10. View Slide

  11. View Slide

  12. View Slide

  13. View Slide

  14. Video Propagation Networks
    Marcel Neidinger
    [email protected]
    23/03/2018

    View Slide

  15. Introduction
    Related Work and Background
    Video Propagation Networks
    Experimental Evaluation

    View Slide

  16. Introduction
    Related Work and Background
    Video Propagation Networks
    Experimental Evaluation
    00

    View Slide

  17. Introduction

    View Slide

  18. So what is the problem?
    01

    View Slide

  19. And what can I do with it?
    02

    View Slide

  20. And what can I do with it?
    02

    View Slide

  21. And what can I do with it?
    02

    View Slide

  22. And what can I do with it?
    02

    View Slide

  23. And what can I do with it?
    03

    View Slide

  24. And what can I do with it?
    03

    View Slide

  25. Duck
    Sea
    Background
    And what can I do with it?
    03

    View Slide

  26. Duck
    Sea
    Background
    And what can I do with it?
    03

    View Slide

  27. And what can I do with it?
    04

    View Slide

  28. And what can I do with it?
    04

    View Slide

  29. And what can I do with it?
    04

    View Slide

  30. And what can I do with it?
    04

    View Slide

  31. Summary: Introduction Recap
    05

    View Slide

  32. Summary: Introduction Recap
    05

    View Slide

  33. Summary: Introduction
    Video Segmentation
    Recap
    05

    View Slide

  34. Summary: Introduction
    Video Segmentation
    Recap
    Semantic Labeling
    05

    View Slide

  35. Summary: Introduction
    Video Segmentation
    Recap
    Semantic Labeling
    Color Propagation
    05

    View Slide

  36. Related Work and Background

    View Slide

  37. General Propagation: Graphs
    06

    View Slide

  38. General Propagation: Graphs
    06

    View Slide

  39. General Propagation: Graphs
    06

    View Slide

  40. General Propagation: Graphs
    These Graphs can be
    Huge
    07

    View Slide

  41. General Propagation: Filtering
    08

    View Slide

  42. General Propagation: Filtering
    08

    View Slide

  43. General Propagation: Filtering
    08

    View Slide

  44. General Propagation: Filtering
    08

    View Slide

  45. Background: Bilateral Filtering
    Edge Preserving
    09

    View Slide

  46. Background: Bilateral Filtering
    Edge Preserving
    09

    View Slide

  47. Background: Bilateral Filtering
    10

    View Slide

  48. Background: Bilateral Filtering
    10

    View Slide

  49. Background: Bilateral Filtering
    ˆ
    vi =
    j∈n
    Wi,jvj
    11

    View Slide

  50. Background: Bilateral Filtering
    ˆ
    vi =
    j∈n
    Wi,jvj
    11

    View Slide

  51. Background: Bilateral Filtering
    ˆ
    vi =
    j∈n
    Wi,jvj
    g
    11

    View Slide

  52. Background: Bilateral Filtering
    x y
    12

    View Slide

  53. Background: Bilateral Filtering
    x y
    T
    12

    View Slide

  54. Bilateral Filtering: Splatting
    13

    View Slide

  55. Bilateral Filtering: Convolving
    B
    14

    View Slide

  56. Bilateral Filtering: slicing
    15

    View Slide

  57. Summary: Related Work Recap
    x y
    T
    B
    16

    View Slide

  58. Video Propagation Networks

    View Slide

  59. The Task: A „formal“ Definition
    Black Box
    (VPN)
    17

    View Slide

  60. Architecture
    BNN CNN
    Bilateral Network Spatial Network
    18

    View Slide

  61. Bilateral Network: Bilateral Convolution Layer (BCL)
    19

    View Slide

  62. Bilateral Network: Bilateral Convolution Layer (BCL)
    19

    View Slide

  63. Bilateral Network: Bilateral Convolution Layer (BCL)
    19

    View Slide

  64. Bilateral Network: Bilateral Convolution Layer (BCL)
    x y
    T
    t
    19

    View Slide

  65. Bilateral Network: Bilateral Convolution Layer (BCL)
    x y
    T
    t
    19

    View Slide

  66. Bilateral Network: Bilateral Convolution Layer (BCL)
    x y
    T
    t
    19

    View Slide

  67. Bilateral Network: Bilateral Convolution Layer (BCL)
    B
    x y
    T
    t
    19

    View Slide

  68. Bilateral Network: Bilateral Convolution Layer (BCL)
    B
    x y
    T
    t
    19

    View Slide

  69. Bilateral Network: Bilateral Convolution Layer (BCL)
    B
    x y
    T
    t
    19

    View Slide

  70. Bilateral Network: Architecture
    Guidance
    BCLa
    BCLb
    ||
    BCLa
    BCLb
    || C-1 C-3 C-3 C-3 || C-1
    20

    View Slide

  71. Summary: Video Propagation Networks
    Recap
    BNN CNN
    Bilateral Network Spatial Network
    21
    x y
    T
    t

    View Slide

  72. Experimental Evaluation

    View Slide

  73. Experiment: Video Object Segmentation
    22

    View Slide

  74. Experiment: Video Object Segmentation
    22

    View Slide

  75. Experiment: Video Object Segmentation
    22

    View Slide

  76. Video Object Segmentation: Dataset
    Densly Annotated VIdeo Segmentation
    23

    View Slide

  77. Video Object Segmentation: Evaluation
    0
    20
    40
    60
    80
    SEA JMP BNN-Identity VPN Stage 2 VPN-Deeplab
    IoU F T
    24

    View Slide

  78. Video Object Segmentation: Improvements
    25

    View Slide

  79. Video Object Segmentation: Improvements
    68
    67,5
    67
    66,5
    66
    0 500 1000
    IoU Score
    Number of Points

    (in Thousand)
    26

    View Slide

  80. Video Object Segmentation: Improvements
    12.000

    SLIC Superpixel
    27

    View Slide

  81. Summary: Experimental Evaluation
    Recap
    -to-
    28

    View Slide

  82. Conclusion
    Three things to take away
    (i) VPNs use a bilateral and a spatial network

    (ii) Offer favorable runtime over current
    methods

    (iii) Perform better then current methods
    1
    1 And yes, this is the only textual slide you will see in this presentation

    View Slide

  83. „The important thing is to never stop
    questioning“
    - Albert Einstein,
    Mastermind of the Universe

    View Slide

  84. Appendix
    • Definition of Performance Measures
    • Detailed Performance (Video Segmentation)
    • Detailed Performance (Semantic Labeling)
    • Detailed Performance (Color Propagation)
    • Literature
    Back to Overview
    • JumpCut (JMP)
    • SeamSeg (SEA)

    View Slide

  85. Performance Measures
    Intersection over Union (IoU)
    Groundtruth G, Output segmentation M
    Contour Accuracy F
    Temporal Stability T
    Back to Overview

    View Slide

  86. Detailed Performance (Video Segmentation)
    Back to Overview

    View Slide

  87. Detailed Performance (Semantic Labeling)
    Back to Overview

    View Slide

  88. Detailed Performance (Color Propagation)
    Back to Overview

    View Slide

  89. Literature (besides the main paper)
    [1] S. Paris and F. Durand. A fast approximation of the bilateralfilter using a signal
    processing approach.

    In European Conference on Computer Vision, pages 568–580. Springer, 2006.
    [2] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high dimensional filters:
    Image filtering, dense CRFs and bilateral neural networks.

    In Computer Vision and Pattern Recognition, IEEE Conference on, June 2016.
    Back to Overview

    View Slide

  90. JumpCut (JMP)
    Back to Overview
    • Key idea: Foreground and background exhibit different motions
    • Calculate two Nearest-Neighbor Fields to label target frame
    • Calculate Silhouette Edges (using the NNFs)

    View Slide

  91. SeamSeg (SEA)
    Back to Overview
    • Key idea: Seams(Connected Paths of low energy) Energy formulation
    allows for temporal label propagation

    View Slide