Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale a Logging Infrastructure
Search
Paul Stack
June 03, 2015
Technology
0
200
How to scale a Logging Infrastructure
Logging infrastructure using ELK + Kafka
Paul Stack
June 03, 2015
Tweet
Share
More Decks by Paul Stack
See All by Paul Stack
Infrastructure as Software
stack72
0
88
Mirror, Mirror on the way, what is the vainest metric of them all?
stack72
1
2.4k
Continuously Delivering Infrastructure to the Cloud
stack72
0
220
DevOops 2016
stack72
0
130
The Quest for Infrastructure Management 2.0
stack72
0
160
The Biggest Trick Consultants Ever Pulled was Telling The World Continuous Delivery is Easy
stack72
1
140
The Transition from Product to Infrastructure
stack72
0
81
Continuous Delivery - the missing parts
stack72
0
990
Windows: Having its ass kicked by puppet and powershell
stack72
0
150
Other Decks in Technology
See All in Technology
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
210
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
870
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
280
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
160
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.2k
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
150
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.8k
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.3k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Featured
See All Featured
The Curious Case for Waylosing
cassininazir
0
230
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
エンジニアに許された特別な時間の終わり
watany
106
230k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
[SF Ruby Conf 2025] Rails X
palkan
1
740
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Transcript
How do you scale a logging infrastructure to accept a
billion messages a day? Paul Stack http://twitter.com/stack72 mail:
[email protected]
About Me Infrastructure Engineer for a cool startup :) Reformed
ASP.NET / C# Developer DevOps Extremist Conference Junkie
Background Project was to replace the legacy ‘logging solution’
Iteration 0: A Developer created a single box with the
ELK all in 1 jar
Time to make it production ready now
None
Iteration 1: Using Redis as the input mechanism for LogStash
None
None
Enter Apache Kafka
“Kafka is a distributed publish- subscribe messaging system that is
designed to be fast, scalable, and durable” Source: Cloudera Blog
Introduction to Kafka • Kafka is made up of ‘topics’,
‘producers’, ‘consumers’ and ‘brokers’ • Communication is via TCP • Backed by Zookeeper
Kafka Topics Source: http://kafka.apache.org/documentation.html
Kafka Producers • Producers are responsible to chose what topic
to publish data to • The producer is responsible for choosing a partition to write to • Can be handled round robin or partition functions
Kafka Consumers • Consumption can be done via: • queuing
• pub-sub
Kafka Consumers • Kafka consumer group • Strong ordering
Kafka Consumers • Strong ordering
https://github.com/opentable/puppet-exhibitor
None
Iteration 2 Introduction of Kafka
None
None
Iteration 3 Further ‘Improvements’ to the cluster layout
None
The Numbers • Logs kept in ES for 30 days
then archived • 12 billion documents active in ES • ES space was about 25 - 30TB in EBS volumes • Average Doc Size ~ 1.2KB • V-Day 2015: ~750M docs collected without failure
What about metrics and monitoring?
Monitoring - Nagios • Alerts on • ES Cluster •
zK and Kafka Nodes • Logstash / Redis nodes
None
https://github.com/stack72/nagios-elasticsearch
Metrics - Kafka Offset Monitor
https://github.com/opentable/KafkaOffsetMonitor
Metrics - ElasticSearch
None
None
None
Visibility Rocks!
None
So what would I do differently?
Questions?
Paul Stack @stack72