Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale a Logging Infrastructure
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Paul Stack
June 03, 2015
Technology
0
200
How to scale a Logging Infrastructure
Logging infrastructure using ELK + Kafka
Paul Stack
June 03, 2015
Tweet
Share
More Decks by Paul Stack
See All by Paul Stack
Infrastructure as Software
stack72
0
88
Mirror, Mirror on the way, what is the vainest metric of them all?
stack72
1
2.4k
Continuously Delivering Infrastructure to the Cloud
stack72
0
220
DevOops 2016
stack72
0
130
The Quest for Infrastructure Management 2.0
stack72
0
160
The Biggest Trick Consultants Ever Pulled was Telling The World Continuous Delivery is Easy
stack72
1
140
The Transition from Product to Infrastructure
stack72
0
81
Continuous Delivery - the missing parts
stack72
0
990
Windows: Having its ass kicked by puppet and powershell
stack72
0
150
Other Decks in Technology
See All in Technology
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
220
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
180
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
640
AWS Network Firewall Proxyを触ってみた
nagisa53
1
220
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
330
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
140
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.3k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
150
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Featured
See All Featured
The browser strikes back
jonoalderson
0
370
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
84
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
73
Context Engineering - Making Every Token Count
addyosmani
9
650
From π to Pie charts
rasagy
0
120
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
65
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
Transcript
How do you scale a logging infrastructure to accept a
billion messages a day? Paul Stack http://twitter.com/stack72 mail:
[email protected]
About Me Infrastructure Engineer for a cool startup :) Reformed
ASP.NET / C# Developer DevOps Extremist Conference Junkie
Background Project was to replace the legacy ‘logging solution’
Iteration 0: A Developer created a single box with the
ELK all in 1 jar
Time to make it production ready now
None
Iteration 1: Using Redis as the input mechanism for LogStash
None
None
Enter Apache Kafka
“Kafka is a distributed publish- subscribe messaging system that is
designed to be fast, scalable, and durable” Source: Cloudera Blog
Introduction to Kafka • Kafka is made up of ‘topics’,
‘producers’, ‘consumers’ and ‘brokers’ • Communication is via TCP • Backed by Zookeeper
Kafka Topics Source: http://kafka.apache.org/documentation.html
Kafka Producers • Producers are responsible to chose what topic
to publish data to • The producer is responsible for choosing a partition to write to • Can be handled round robin or partition functions
Kafka Consumers • Consumption can be done via: • queuing
• pub-sub
Kafka Consumers • Kafka consumer group • Strong ordering
Kafka Consumers • Strong ordering
https://github.com/opentable/puppet-exhibitor
None
Iteration 2 Introduction of Kafka
None
None
Iteration 3 Further ‘Improvements’ to the cluster layout
None
The Numbers • Logs kept in ES for 30 days
then archived • 12 billion documents active in ES • ES space was about 25 - 30TB in EBS volumes • Average Doc Size ~ 1.2KB • V-Day 2015: ~750M docs collected without failure
What about metrics and monitoring?
Monitoring - Nagios • Alerts on • ES Cluster •
zK and Kafka Nodes • Logstash / Redis nodes
None
https://github.com/stack72/nagios-elasticsearch
Metrics - Kafka Offset Monitor
https://github.com/opentable/KafkaOffsetMonitor
Metrics - ElasticSearch
None
None
None
Visibility Rocks!
None
So what would I do differently?
Questions?
Paul Stack @stack72