Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale a Logging Infrastructure
Search
Paul Stack
June 03, 2015
Technology
0
170
How to scale a Logging Infrastructure
Logging infrastructure using ELK + Kafka
Paul Stack
June 03, 2015
Tweet
Share
More Decks by Paul Stack
See All by Paul Stack
Infrastructure as Software
stack72
0
64
Mirror, Mirror on the way, what is the vainest metric of them all?
stack72
1
2.3k
Continuously Delivering Infrastructure to the Cloud
stack72
0
170
DevOops 2016
stack72
0
120
The Quest for Infrastructure Management 2.0
stack72
0
130
The Biggest Trick Consultants Ever Pulled was Telling The World Continuous Delivery is Easy
stack72
1
110
The Transition from Product to Infrastructure
stack72
0
58
Continuous Delivery - the missing parts
stack72
0
920
Windows: Having its ass kicked by puppet and powershell
stack72
0
120
Other Decks in Technology
See All in Technology
大規模アジャイルフレームワークから学ぶエンジニアマネジメントの本質
staka121
PRO
3
1.4k
Amazon Aurora のバージョンアップ手法について
smt7174
2
180
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
110
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
150
OPENLOGI Company Profile
hr01
0
60k
Potential EM 制度を始めた理由、そして2年後にやめた理由 - EMConf JP 2025
hoyo
2
2.9k
技術スタックだけじゃない、業務ドメイン知識のオンボーディングも同じくらいの量が必要な話
niftycorp
PRO
0
120
ウォンテッドリーのデータパイプラインを支える ETL のための analytics, rds-exporter / analytics, rds-exporter for ETL to support Wantedly's data pipeline
unblee
0
140
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
2
1.1k
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
110
AIエージェント入門
minorun365
PRO
32
19k
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
7
3.2k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
For a Future-Friendly Web
brad_frost
176
9.6k
Agile that works and the tools we love
rasmusluckow
328
21k
Bash Introduction
62gerente
611
210k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
GitHub's CSS Performance
jonrohan
1030
460k
Code Reviewing Like a Champion
maltzj
521
39k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Rails Girls Zürich Keynote
gr2m
94
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
How do you scale a logging infrastructure to accept a
billion messages a day? Paul Stack http://twitter.com/stack72 mail: paul@paulstack.co.uk
About Me Infrastructure Engineer for a cool startup :) Reformed
ASP.NET / C# Developer DevOps Extremist Conference Junkie
Background Project was to replace the legacy ‘logging solution’
Iteration 0: A Developer created a single box with the
ELK all in 1 jar
Time to make it production ready now
None
Iteration 1: Using Redis as the input mechanism for LogStash
None
None
Enter Apache Kafka
“Kafka is a distributed publish- subscribe messaging system that is
designed to be fast, scalable, and durable” Source: Cloudera Blog
Introduction to Kafka • Kafka is made up of ‘topics’,
‘producers’, ‘consumers’ and ‘brokers’ • Communication is via TCP • Backed by Zookeeper
Kafka Topics Source: http://kafka.apache.org/documentation.html
Kafka Producers • Producers are responsible to chose what topic
to publish data to • The producer is responsible for choosing a partition to write to • Can be handled round robin or partition functions
Kafka Consumers • Consumption can be done via: • queuing
• pub-sub
Kafka Consumers • Kafka consumer group • Strong ordering
Kafka Consumers • Strong ordering
https://github.com/opentable/puppet-exhibitor
None
Iteration 2 Introduction of Kafka
None
None
Iteration 3 Further ‘Improvements’ to the cluster layout
None
The Numbers • Logs kept in ES for 30 days
then archived • 12 billion documents active in ES • ES space was about 25 - 30TB in EBS volumes • Average Doc Size ~ 1.2KB • V-Day 2015: ~750M docs collected without failure
What about metrics and monitoring?
Monitoring - Nagios • Alerts on • ES Cluster •
zK and Kafka Nodes • Logstash / Redis nodes
None
https://github.com/stack72/nagios-elasticsearch
Metrics - Kafka Offset Monitor
https://github.com/opentable/KafkaOffsetMonitor
Metrics - ElasticSearch
None
None
None
Visibility Rocks!
None
So what would I do differently?
Questions?
Paul Stack @stack72