Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale a Logging Infrastructure
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Paul Stack
June 03, 2015
Technology
0
200
How to scale a Logging Infrastructure
Logging infrastructure using ELK + Kafka
Paul Stack
June 03, 2015
Tweet
Share
More Decks by Paul Stack
See All by Paul Stack
Infrastructure as Software
stack72
0
88
Mirror, Mirror on the way, what is the vainest metric of them all?
stack72
1
2.4k
Continuously Delivering Infrastructure to the Cloud
stack72
0
220
DevOops 2016
stack72
0
130
The Quest for Infrastructure Management 2.0
stack72
0
160
The Biggest Trick Consultants Ever Pulled was Telling The World Continuous Delivery is Easy
stack72
1
140
The Transition from Product to Infrastructure
stack72
0
81
Continuous Delivery - the missing parts
stack72
0
990
Windows: Having its ass kicked by puppet and powershell
stack72
0
150
Other Decks in Technology
See All in Technology
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
120
配列に見る bash と zsh の違い
kazzpapa3
1
140
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.3k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
150
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
920
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
130
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
240
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.2k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
540
Featured
See All Featured
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Building Adaptive Systems
keathley
44
2.9k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
Odyssey Design
rkendrick25
PRO
1
490
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Testing 201, or: Great Expectations
jmmastey
46
8k
A Modern Web Designer's Workflow
chriscoyier
698
190k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Transcript
How do you scale a logging infrastructure to accept a
billion messages a day? Paul Stack http://twitter.com/stack72 mail:
[email protected]
About Me Infrastructure Engineer for a cool startup :) Reformed
ASP.NET / C# Developer DevOps Extremist Conference Junkie
Background Project was to replace the legacy ‘logging solution’
Iteration 0: A Developer created a single box with the
ELK all in 1 jar
Time to make it production ready now
None
Iteration 1: Using Redis as the input mechanism for LogStash
None
None
Enter Apache Kafka
“Kafka is a distributed publish- subscribe messaging system that is
designed to be fast, scalable, and durable” Source: Cloudera Blog
Introduction to Kafka • Kafka is made up of ‘topics’,
‘producers’, ‘consumers’ and ‘brokers’ • Communication is via TCP • Backed by Zookeeper
Kafka Topics Source: http://kafka.apache.org/documentation.html
Kafka Producers • Producers are responsible to chose what topic
to publish data to • The producer is responsible for choosing a partition to write to • Can be handled round robin or partition functions
Kafka Consumers • Consumption can be done via: • queuing
• pub-sub
Kafka Consumers • Kafka consumer group • Strong ordering
Kafka Consumers • Strong ordering
https://github.com/opentable/puppet-exhibitor
None
Iteration 2 Introduction of Kafka
None
None
Iteration 3 Further ‘Improvements’ to the cluster layout
None
The Numbers • Logs kept in ES for 30 days
then archived • 12 billion documents active in ES • ES space was about 25 - 30TB in EBS volumes • Average Doc Size ~ 1.2KB • V-Day 2015: ~750M docs collected without failure
What about metrics and monitoring?
Monitoring - Nagios • Alerts on • ES Cluster •
zK and Kafka Nodes • Logstash / Redis nodes
None
https://github.com/stack72/nagios-elasticsearch
Metrics - Kafka Offset Monitor
https://github.com/opentable/KafkaOffsetMonitor
Metrics - ElasticSearch
None
None
None
Visibility Rocks!
None
So what would I do differently?
Questions?
Paul Stack @stack72