Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kinesushiでみた Amazon Kinesisの話
Search
suzryo
December 16, 2014
Technology
0
3.1k
Kinesushiでみた Amazon Kinesisの話
Kinesushiをつくって解った、Amazon Kinesisの話。
suzryo
December 16, 2014
Tweet
Share
More Decks by suzryo
See All by suzryo
re:Invent2024 事前勉強会 AWS Gameday 参加のポイント
suzryo
0
1k
20230630-JAWSUG札幌LT-AWSオンライン試験のコツ
suzryo
1
250
ipv6-aws-20210714-infrastudy-2nd-03
suzryo
0
44
Graviton2を使う理由について語ってみる
suzryo
0
130
8/23 Developers.IOブログに 何が起きたか
suzryo
0
1.7k
ラスベガスへの行き方を調べてみた
suzryo
0
230
AWS Globel Accelerator を導入してみた話 @ JAWS-UG東京 #32 - マイベストヒット2019
suzryo
0
930
Developers.IOを支えるインフラの全て
suzryo
0
110
クラメソのWebサイトを支える技術
suzryo
1
2.2k
Other Decks in Technology
See All in Technology
Intro to Software Startups: Spring 2025
arnabdotorg
0
240
Claude Codeから我々が学ぶべきこと
oikon48
10
2.8k
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.7k
Rubyの国のPerlMonger
anatofuz
3
730
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
820
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
220
Serverless Meetup #21
yoshidashingo
1
120
o11yツールを乗り換えた話
tak0x00
2
920
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
410
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
210
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
210
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
770
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Bash Introduction
62gerente
614
210k
Unsuck your backbone
ammeep
671
58k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Thoughts on Productivity
jonyablonski
69
4.8k
Transcript
⡥$MBTTNFUIPE *OD ,JOFTVTIJͰΈͨ "NB[PO,JOFTJTͷ %&7*0.56150,:0 ླ྄ "84νʔϜ Ϋϥεϝιουʢגʣ ݄
⡥$MBTTNFUIPE *OD ࣗݾհ w ࢯ໊ɹླɹ྄ʢ͖ͣ͢ɹΓΐ͏ʣ w ॴଐ w Ϋϥεϝιου"84νʔϜ w
νʔϜ6,:0SFWFʢϩʔυϨʔεʣ w 5XJUUFSɹTV[SZP
ετϦʔϛϯάσʔλΛ ϦΞϧλΠϜͰॲཧ͢Δ શϚωʔδυܕαʔϏε "NB[PO,JOFTJT ͱʁ
⡥$MBTTNFUIPE *OD "844PMVUJPOT"SDIJUFDUϒϩά IUUQBXTUZQFQBEDPNTBKQLJOFTJT@IUNM
⡥$MBTTNFUIPE *OD ฐࣾϒϩάʢ"844VNNJUϨϙʔτʣ IUUQEFWDMBTTNFUIPEKQDMPVEBXTBXTTVNNJUUPLZPLJOFTJT
⡥$MBTTNFUIPE *OD ฐࣾϒϩά̎ʢ,JOFTJTಛूʣ IUUQEFWDMBTTNFUIPEKQSFGFSFODFDBUBXTLJOFTJT
"NB[PO,JOFTJT ϝϦοτ
εέʔϧੑ
⡥$MBTTNFUIPE *OD ,JOFTVTIJߏਤʢਫ༵ɿʣ
⡥$MBTTNFUIPE *OD ,JOFTVTIJߏਤʢ༵ɿʣ
⡥$MBTTNFUIPE *OD ༵ w ্ݶ؇ਃʢ"84αϙʔτਃʣ w ,JOFTJTγϟʔυΛˠ w ݕূ༻,JOFTJTετϦʔϜઃஔ w
ύʔςΟγϣϯΩʔͷݕূ w ళฮ൪߸Λ༻͍Δଥੑ w γϟʔυࢄ֬ೝ
⡥$MBTTNFUIPE *OD ,JOFTVTIJߏਤʢ༵ۚɿʣ
⡥$MBTTNFUIPE *OD ༵ۚ w ళฮ165։࢝ w γϟʔυͷ࣮ੑೳ֬ೝ w ,JOFTJTγϟʔυ্ݶ؇
⡥$MBTTNFUIPE *OD ,JOFTVTIJߏਤʢ݄༵ɿʣ
⡥$MBTTNFUIPE *OD ݄༵ w ళฮઌߦ165։࢝ w ४උ࣌ؒ w ϐʔΫ࣌ɿສ165ʗ࣌ؒ w
ɿʙສ165 w ϲ݄ɿԯલޙ165
⡥$MBTTNFUIPE *OD ֹ݄ίετ "84αʔϏε ֦ுલ ֦ுޙ ,JOFTJT े ඦेˈ
4 ˈ &$ ेˈ ඦˈ
Մ༻ੑ อकੑ ႈੑ
⡥$MBTTNFUIPE *OD ,JOFTVTIJߏਤ
⡥$MBTTNFUIPE *OD ো "QQো࣌ɺσʔλ165ܧଓ σʔλॏอ ʢ࣌ؒҎʹ෮چ͢Εʣσʔλϩετͳ͠
⡥$MBTTNFUIPE *OD ෮چ ࿈൪ʹΑΔႈੑ֬อ ϦτϥΠ͕Մೳ
⡥$MBTTNFUIPE *OD ϝϯςφϯε "1Ұ࣌ఀࢭͰσʔλϩετͳ͠
⡥$MBTTNFUIPE *OD #MVF(SFFO%FQMPZNFOU
ϏοάσʔλΛ ͓खࠒʹ
⡥$MBTTNFUIPE *OD &$ʢ< >YMBSHFʣ &.3
⡥$MBTTNFUIPE *OD ,JOFTJT
⡥$MBTTNFUIPE *OD
⡥$MBTTNFUIPE *OD ·ͱΊʢ,JOFTJTͱʣ w ߴ͍֦ுੑͱ৴པੑΛඋ͑ͨόοϑΝͰ͢ɻ w ೖޱ̍ͭɺग़ޱࢁΛ࣮ݱ͠·͢ɻ w ΫϥυͳΒͰͷϝϦοτɺ %FWɺ0QTɺ.OHɺ
օͰڗड͢Δࣄ͕ՄೳͰ͢ɻ
⡥$MBTTNFUIPE *OD #cmdevio ͝੩ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ εϥΠυޙϒϩάͰެ։͠·͢ɻ %&7*0.56150,:0