Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PRML勉強会 第五章 -後半 - 川上雄太作成分
Search
takegue
June 02, 2014
Technology
0
1.5k
PRML勉強会 第五章 -後半 - 川上雄太作成分
代理アップロード
takegue
June 02, 2014
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
820
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.3k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1k
Rettyにおけるデータ活用について
takegue
0
870
Sparse Overcomplete Word Vector Representations
takegue
0
200
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
200
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
70
Other Decks in Technology
See All in Technology
2025年のARグラスの潮流
kotauchisunsun
0
790
PaaSの歴史と、 アプリケーションプラットフォームのこれから
jacopen
7
1.4k
20250116_自部署内でAmazon Nova体験会をやってみた話
riz3f7
1
100
#TRG24 / David Cuartielles / Post Open Source
tarugoconf
0
580
30分でわかる「リスクから学ぶKubernetesコンテナセキュリティ」/30min-k8s-container-sec
mochizuki875
3
440
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
140
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
850
信頼されるためにやったこと、 やらなかったこと。/What we did to be trusted, What we did not do.
bitkey
PRO
0
2.2k
コロプラのオンボーディングを採用から語りたい
colopl
5
960
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
アジャイルチームが変化し続けるための組織文化とマネジメント・アプローチ / Agile management that enables ever-changing teams
kakehashi
3
3.3k
RubyでKubernetesプログラミング
sat
PRO
4
160
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
We Have a Design System, Now What?
morganepeng
51
7.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
860
Side Projects
sachag
452
42k
Speed Design
sergeychernyshev
25
740
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Transcript
PRML 勉強会 第5章 ニューラルネットワーク 担当:王研究室 川上雄太
第二週 ・NNの正則化 ・NNのなかまたち (畳込みNN, 混合密度NN, ベイズNN) ・deep learningの話 について ざっくりざっくりandざっくりやります
前回までのあらすじ PRML §5.1 - §5.4 p.225 – p.257
5.1 フィードフォワードネットワーク関数 • 1つにまとめると • 図で表すと , = 2 =0
ℎ (1) =0 (5.9)
5.1 フィードフォワードネットワーク関数 • こんな図で表せるので”ネットワーク” • (5.9)式の出力を求める計算過程を順伝搬と呼ぶ • 今後この構造を2層NNと呼ぶ • ネットワーク構造には様々な拡張が考えられる
NNの学習 • NNは誤差関数を最小化するように学習する (最急降下法の場合) (+1) = () − (()) •
パラメータに関する誤差関数の微分 が 知りたい
5.3.1 誤差関数微分の評価 • 長々やったけど結局どういうことかというと 逆伝搬公式 = = ℎ′ 出力側 入力側
学習の流れ 0.重みをランダムに振る 1.入力ベクトル による現在の出力を求める (順伝搬) 2.出力層での誤差 を計算する 3. をもとに全ての隠れユニットの を得る(逆伝搬)
4. を用いて誤差関数の微分( )を評価 5.重みを更新 6.誤差が十分小さくなったら終了 ならなければ1.に戻る (+1) = () − (())
NNの正則化 PRML §5.5 p.258 – p.269
何をしたいのか • NNは万能近似器 → 過学習に陥りやすい! • なんとかうまく学習したい • 複雑さを制御したい
何をしたいのか • NNは万能近似器 → 過学習に陥りやすい! • なんとかうまく学習したい • 複雑さを制御したい
問題とアプローチ • 隠れユニット数の決定 - 実験実験アンド実験 • 結合重みの学習 - 正則化項の追加 -
学習の早期終了 • 不変性・汎化性能の確保 - 訓練データの工夫 - 正則化項の工夫 - 入力するデータの前処理の工夫 - NNの構造の工夫
結合重みの学習 • 普通の荷重減衰 (§3より) = + 2 • 重みの線形変換に対して不変な正則化項
= + 1 2 2 ∈1 + 2 2 2 ∈2 正則化項の追加
結合重みの学習 • 訓練時エラーは減っていくが、検証時エラーは あるところで増え始める • 検証時エラーが最小なときに訓練をストップ 学習の早期終了
不変性・汎化性能の確保 • 例えば手書き文字認識では・・・ - 文字の画面内での位置は一定でない - 文字の各部が伸縮しうる • 訓練データに手を加えて水増しする 訓練データの工夫
不変性・汎化性能の確保 • 入力の変換に対して出力が変化した時にペナル ティを加える。 → 接線伝搬法 正則化項の工夫 • 特徴抽出など、NNの前段階で線形変換への不 変性を確保する
• 職人芸的 データの前処理の工夫
NNのなかまたち PRML §5.6 - §5.7 p.270 – p.288 +α
何をしたいのか • NNの構造は結構いくらでもいじれる • いろんな構造が提案されているので紹介
畳込みNN • 画像認識でよく使われる (木村くんが詳しい) • 全結合のNNは局所的特徴を捉えにくい • 局所的な結合を利用して特徴抽出処理を実現
混合密度ネットワーク • 順問題と逆問題 問題によって、答えが複数ある場合がある →推定すべき関数に多峰性がある
混合密度ネットワーク • 順問題と逆問題 問題によって、答えが複数ある場合がある →推定すべき関数に多峰性がある
混合密度ネットワーク • じゃあどうする NNの出力を確率分布のパラメータにする (今回は混合正規分布の平均・分散・重み)
混合密度ネットワーク • じゃあどうする NNの出力を確率分布のパラメータにする (今回は混合正規分布の平均・分散・重み)
ベイズニューラルネットワーク • ここまでのNNの話は確率とかあんまり考えて なかった • ネットワークのパラメータを、事前分布と教師 データからMAP推定する考え方 • 過学習を抑制できる •
詳細略!!
Deep Learning の話
Deep Learning とは? • 要するにものすごく大きいニューラルネットワーク • 表現力がものすごく高い • やることはNNと同じ? →
同じではうまくいかない! 入力層 中間層 出力層 入力ベクトル 出力ベクトル 26
学習の問題 • NNの学習は・・・ → 初期値を乱数で振って、誤差逆伝搬学習 入力ベクトル xによる出力ベクトル ′ 教師信号 比較
誤差 誤差 27
• 大規模なNNだと・・・ → 入力に近い層が全然学習されない! → ものすごく時間がかかる! 学習の問題 入力ベクトル xによる出力ベクトル ′
教師信号 比較 誤差 誤差 誤差 誤 差 28
Deep Learning の基本方針 • 以下の手順でやるとうまくいく ① 乱数で初期値を振る ② 各層を教師なし学習 ③
教師データをつけて誤差逆伝搬学習 • 要するに・・・ 誤差逆伝搬学習の前に、それなりに良さそうな重みに学 習しておくということ • 教師なし学習?? New! 29
Restricted Boltzmann Machine (RBM) 結合重み 可視層のバイアス = {1 … }
隠れ層のバイアス = {1 … } 隠れ層の状態 = {ℎ1 … ℎ } 可視層の状態 = {1 … } • その系の可視層から、状態が観測される確率 ) = exp(− , )) exp(− , )) • このとき、log )を最大化するように、を推定する(最尤推定) • 入力に対して、一番 「いい感じの」 結合重みが得られる 30
RBM RBMを用いた初期学習 (Pre-training) • 入力層から順に、各層をRBMと見立てて重みを学習 • これによって・・・ → 各層が特徴抽出能力を獲得 →
誤差逆伝搬学習のための良好な初期値となる 入力層 中間層 出力層 入力ベクトル 出力ベクトル 31
以上です • ニューラルネットワークがどんなものか、なん となくわかっていただけたら幸いです。 • 大変だった・・・・ • 次回は木村くんですね。頑張って!