Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データセットシフト・Batch Normalization
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Taro Nakasone
September 05, 2025
Research
0
15
データセットシフト・Batch Normalization
※過去に作成した資料の内部共有用の掲載です
Taro Nakasone
September 05, 2025
Tweet
Share
More Decks by Taro Nakasone
See All by Taro Nakasone
[輪講] Transformer(大規模言語モデル入門第2章)
taro_nakasone
0
30
次元削減・多様体学習 /maniford-learning20200707
taro_nakasone
2
1.7k
論文読み:Identifying Mislabeled Data using the Area Under the Margin Ranking (NeurIPS'20) /Area_Under_the_Margin_Ranking
taro_nakasone
0
200
Other Decks in Research
See All in Research
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
LLMアプリケーションの透明性について
fufufukakaka
0
140
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
音声感情認識技術の進展と展望
nagase
0
470
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Featured
See All Featured
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
51
We Have a Design System, Now What?
morganepeng
54
8k
It's Worth the Effort
3n
188
29k
30 Presentation Tips
portentint
PRO
1
220
How to Talk to Developers About Accessibility
jct
2
130
The Spectacular Lies of Maps
axbom
PRO
1
520
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Transcript
データセットシフト 仲宗根太朗・櫻井研究室 学会名・セッション名・発表年月日・開催場所
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
Covariate Shift ◼定義 学習時とテスト時で入力変数の周辺分布が異なるという問題設定
Target Shift ◼定義 学習時とテスト時で出力変数の周辺分布が異なるという問題設定
Concept Shift ◼定義 学習時とテスト時で条件付き確率分布が異なるという問題設定
Sample Selection Bias ◼定義 観測データをデータセットに含めるかどうかを決める隠れた関数ξ が存在し,この関数が学習時とテスト時で異なるという問題設定
Domain Shift 潜在的に同じものを説明しているにも関わらず,計測技術や環境の違い などの影響で変数が異なってしまう問題設定
対策手法 ◼以下のような対策手法がある ⚫Batch Normalization
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼アルゴリズム
Batch Normalization ◼ミニバッチごとの平均分散を計算する
Batch Normalization ◼正規化を行う
Batch Normalization ◼正規化を行う 分母に𝜖を加えていますが、これ は微小値を表し、𝝈𝑩 𝟐 が小さい場 合に計算を安定されるため
Batch Normalization ◼レイヤの非線形性に対応させる調整
Batch Normalization ◼平均と分散の調節 単純にෞ 𝒙𝒊 をインプットとすると, 本来レイヤが持つ非線形性の表現 力を失っている可能性がある
Batch Normalization ◼例えば,シグモイド関数の場合
Batch Normalization ◼例えば,シグモイド関数の場合 インプットが-1から1の範囲で はほぼ線形になっている
Batch Normalization ◼この解決策として
Batch Normalization ◼以下のように横にシフト,スケール変化すれば良い
Batch Normalization ◼それを踏まえて,
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入 ෞ 𝒙𝒊 を𝜷の分だけ横にシフト, 𝜸でスケールを変更できる.