Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データセットシフト・Batch Normalization
Search
Taro Nakasone
September 05, 2025
Research
0
9
データセットシフト・Batch Normalization
※過去に作成した資料の内部共有用の掲載です
Taro Nakasone
September 05, 2025
Tweet
Share
More Decks by Taro Nakasone
See All by Taro Nakasone
[輪講] Transformer(大規模言語モデル入門第2章)
taro_nakasone
0
13
次元削減・多様体学習 /maniford-learning20200707
taro_nakasone
1
1.6k
論文読み:Identifying Mislabeled Data using the Area Under the Margin Ranking (NeurIPS'20) /Area_Under_the_Margin_Ranking
taro_nakasone
0
190
Other Decks in Research
See All in Research
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
超高速データサイエンス
matsui_528
1
220
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
14
7.7k
財務諸表監査のための逐次検定
masakat0
0
200
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
350
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
930
20250725-bet-ai-day
cipepser
3
540
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
680
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
160
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Optimizing for Happiness
mojombo
379
70k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Navigating Team Friction
lara
191
16k
Designing for humans not robots
tammielis
254
26k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The Invisible Side of Design
smashingmag
302
51k
Transcript
データセットシフト 仲宗根太朗・櫻井研究室 学会名・セッション名・発表年月日・開催場所
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
はじめに ◼以下のデータシフトの問題設定がある ⚫Covariate Shift ⚫Target Shift ⚫Concept Shift ⚫Sample Selection
Bias ⚫Domain Shift ◼ただし,それそれの問題が必ずしも独立ではない
Covariate Shift ◼定義 学習時とテスト時で入力変数の周辺分布が異なるという問題設定
Target Shift ◼定義 学習時とテスト時で出力変数の周辺分布が異なるという問題設定
Concept Shift ◼定義 学習時とテスト時で条件付き確率分布が異なるという問題設定
Sample Selection Bias ◼定義 観測データをデータセットに含めるかどうかを決める隠れた関数ξ が存在し,この関数が学習時とテスト時で異なるという問題設定
Domain Shift 潜在的に同じものを説明しているにも関わらず,計測技術や環境の違い などの影響で変数が異なってしまう問題設定
対策手法 ◼以下のような対策手法がある ⚫Batch Normalization
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼解決したい問題 − Internal Covariate Shift ⚫深層モデルにて,インプットの分布がころころ変わる ◼解決方法 ⚫レイヤごとのインプットを正規化しようという発想
⚫ただし,パラメータ更新の度に学習データ全体をネットワークに 流して,各レイヤのインプットを求め正規化を行うのは効率悪い ⚫そこでミニバッチごとの統計量を使って,ミニバッチごとに簡易 的な正規化を行う
Batch Normalization ◼アルゴリズム
Batch Normalization ◼ミニバッチごとの平均分散を計算する
Batch Normalization ◼正規化を行う
Batch Normalization ◼正規化を行う 分母に𝜖を加えていますが、これ は微小値を表し、𝝈𝑩 𝟐 が小さい場 合に計算を安定されるため
Batch Normalization ◼レイヤの非線形性に対応させる調整
Batch Normalization ◼平均と分散の調節 単純にෞ 𝒙𝒊 をインプットとすると, 本来レイヤが持つ非線形性の表現 力を失っている可能性がある
Batch Normalization ◼例えば,シグモイド関数の場合
Batch Normalization ◼例えば,シグモイド関数の場合 インプットが-1から1の範囲で はほぼ線形になっている
Batch Normalization ◼この解決策として
Batch Normalization ◼以下のように横にシフト,スケール変化すれば良い
Batch Normalization ◼それを踏まえて,
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入
Batch Normalization ◼平均に対応するパラメータ𝜷と分散に対応する𝜸を導入 ෞ 𝒙𝒊 を𝜷の分だけ横にシフト, 𝜸でスケールを変更できる.