Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
YOLOv10~v12
Search
TakatoYoshikawa
April 16, 2025
Technology
6
1.6k
YOLOv10~v12
DeNA/Go CV輪講の発表時の資料です。
YOLOv10~v12の改良点を調査し、まとめました。
TakatoYoshikawa
April 16, 2025
Tweet
Share
More Decks by TakatoYoshikawa
See All by TakatoYoshikawa
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
1.9k
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
4
4k
Segment Anything Model 2 (SAM2)
tenten0727
4
2.4k
Other Decks in Technology
See All in Technology
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
4k
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
240
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
430
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
200
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
150
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
650
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
3.6k
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
350
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
130
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
230
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
210
Featured
See All Featured
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
WCS-LA-2024
lcolladotor
0
390
From π to Pie charts
rasagy
0
91
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
4 Signs Your Business is Dying
shpigford
186
22k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
A better future with KSS
kneath
240
18k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
750
Visualization
eitanlees
150
16k
The SEO identity crisis: Don't let AI make you average
varn
0
36
Transcript
AI 2025.3.21 Takato Yoshikawa 株式会社ディー・エヌ・エー + GO株式会社 YOLOv10~v12
AI 2 ❏ Object Detectionタスクでよく使われる手法YOLO ❏ 性能と効率のバランスが良い ❏ 最近のYOLOはどこを改善しているのか はじめに
https://arxiv.org/pdf/1506.02640
AI 3 01 YOLOv10
AI 4 ❏ YOLOv10の改善 a. 推論時のNMS(Non-Maximum Suppression)による後処理を 不要にする学習方法 → End-to-endのObject
Detectionへ b. 効率と精度を両立させるためのモデルアーキテクチャの改善 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024] 速度/精度、モデルサイズ/精度のトレードオフで 既存手法を上回る
AI 5 ❏ NMSによる後処理 1. 信頼度がしきい値以下のBBoxを削除 2. 最も信頼度が高いBBoxと他のBBoxとのIoUを計算 3. IoUがしきい値以上のBBoxを削除
❏ NMSの課題点 ❏ End-to-endでないため、精度がしきい値 に依存する ❏ NMSにかかる時間分推論速度が低下する 0.8 0.9 0.7 https://arxiv.org/abs/2304.08069 YOLOv8でそれぞれのしきい値を変化させたときの 精度とNMSにかかる時間の変化 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 6 ❏ One-to-one Headを追加 ❏ Detection Transformerを参考に 各GTに対して複数のBBox とLossを計算
(従来のYOLOと同様) 各GTに対して1つのBBox とLossを計算 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 7 ❏ Consistent dual assignment ❏ 学習時は両方のヘッドで最適化 ❏ 推論時はOne-to-one
Headのみ使用 →NMS不要でEnd-to-endの推論が可能に! YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 8 ❏ Consistent matching metric ❏ 各GTに対してどの予測BBoxを割り当てるか ❏ 以下の指標を元に割り当て
❏ One-to-manyはtop n個を割り当て ❏ α, βは分類と位置のタスクの重要度のバランス を取るハイパーパラメータ ❏ One-to-oneとOne-to-manyそれぞれで同じパラメータにすることで 両方のヘッドの最適な予測BBoxが同じになるように学習が進む GTの中にアンカーポイント があるかどうか0/1 分類スコア GTと予測BBox のIoU YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 9 ❏ 効率化のためのモデルアーキテクチャ改善 ❏ クラス分類のConv→Depthwise conv + Pointwise convに変更
❏ 空間ダウンサンプリング時のConv→Pointwise conv + Depthwise convに変更 ❏ 各ステージの最後の畳み込みのランクが低いブロックを より効率的なCIBブロックに置き換える 各ステージ・スケールのランク CIBブロック YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 10 ❏ 精度向上のためのモデルアーキテクチャ改善 ❏ 大きいカーネルによる畳み込みの導入 ❏ 一部にMulti-head self-attentionを導入 YOLOv10:
Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 11 02 YOLOv11
AI 12 ❏ YOLOv8同様論文はない ❏ 別の人がまとめた資料やgithubのissueを参照 ❏ 公式の名前はYOLOv11ではなくYOLO11? YOLOv11
AI 13 ❏ アーキテクチャの変更 ❏ (おそらく)YOLOv8をベースに 以下の改良を加える ❏ C2fブロック→C3k2ブロックに ❏
SPPFの後ろにCross Stage Partial with Spatial Attention (C2PSA) ブロックを追加 ❏ 幅広いタスクをサポート ❏ 物体検出、instance segmentation ❏ pose estimation ❏ 画像分類 ❏ Oriented Detection YOLOv11 https://github.com/ultralytics/ultralytics/issues/17102
AI 14 ❏ YOLOv10と比べた性能 ❏ 同じスケールのモデルでmAPやLatencyは少し改善 ❏ パラメータ数やFLOPsはYOLOv10のほうが良い YOLOv11 https://docs.ultralytics.com/ja/models/yolo11/
Model mAPval 50-90 Latenc y T4 params FLOPs YOLO v10-m 51.1% 4.74ms 15.4M 59.1G YOLO v11-m 51.5% 4.7 ms 20.1M 68.0G
AI 15 03 YOLOv12
AI 16 ❏ アーキテクチャの変更 1. Area attention (A2) moduleの導入 2.
Residual Efficient Layer Aggregation Networks(R-ELAN) の導入 3. アーキテクチャの調整 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 17 ❏ Area Attention (A2) Module ❏ 特徴マップを(H/l, W)
or(H, W/I)に分割してAttentionを計算 ❏ window分割の処理等が不要で、reshapeのみで動作するので高速 ❏ l=4で実装 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 18 ❏ R-ELAN (Residual Efficient Layer Aggregation Networks) a.
CSPNet ❏ DenseNetの利点を活かしつつ、勾配経路に着目し 最初に特徴マップを分岐(勾配経路を分岐)させることで、 大きいモデルでも安定した学習+計算効率UP b. ELAN ❏ ブロックの途中も分岐させて、短い勾配経路を増やすことで 層を増やしてもより安定した学習になり、精度向上 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 19 ❏ R-ELAN (Residual Efficient Layer Aggregation Networks) c.
C3K2(YOLOv11で使用) ❏ 1つの大きな畳み込みの代わりに、分岐させた2つの畳み込みを使うことで 計算効率を上げる d. R-ELAN ❏ ELANのConvをA2モジュールにすると収束しづらい(特に大きいモデル) ❏ 特徴マップの分岐はせずに、残差ショートカットを追加 →学習が安定+計算コストやパラメータも削減 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 20 ❏ アーキテクチャの調整 ❏ backboneの最初の2ステージはYOLOv11と同様 ❏ 残りのC3k2→R-ELANに ❏ backboneの最後の3ブロックもR-ELAN
❏ Attention moduleの調整 ❏ Linear+LNの代わりにConv2d+BN ❏ Positional Encodingの代わりに7x7畳み込みで位置情報を補助 など YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 21 ❏ 性能 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+,
arXiv2025]
AI 22 まとめ ❏ YOLOv10 ❏ NMSを不要にする学習方法でEnd-to-endに ❏ DETRに近い学習方法 ❏
YOLOv11 ❏ アーキテクチャの調整 ❏ YOLOv12 ❏ Attention機構の導入 ❏ それに伴うR-ELANの導入