Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Examination of the spatial relationship between...

Examination of the spatial relationship between development and aquatic nutrient loading in the Galveston Bay Estuary

Helen Walters and Samuel Brody - Texas A&M University, Galveston Campus

More Decks by Texas Natural Resources Information System

Other Decks in Technology

Transcript

  1. The  relationship  between   phosphorus  and  low  intensity   development

     in  the  Galveston  Bay   Estuary   Helen  Walters;  CTBS,  Texas  A&M  Galveston   Master’s  Advisor:  Dr.  Samuel  Brody;  Texas  A&M   Galveston  
  2. •  Water  quality  is  typically  negatively  impacted  by   development.

      •  Developers  should  attempt  to  minimize  the  negative   effects  on  water  quality.     •  In  order  to  do  this,  site  specific  relationships  of  the   water  quality  and  development  patterns  need  to  be   understood  by  planners  and  developers.         Site  specific  studies  to  assess  water   quality  and  development  relationship  
  3. Looking  regionally   –  Houston/ Galveston  Bay   Estuary  

    •  The  study  is  driven  by   an  ecosystem   approach.     •  99  water  quality  gauge   points  with  adequate   phosphorus  data   between  2010  and  2013   and  between  10  and  110   mi2.  
  4. •  Houston/Galveston  is  one  of  the  fastest  growing   regions

     in  the  U.S.   •  About  6.5  million  people  and  growing  in  the  Houston/ Galveston  region  (Houston-­‐Galveston  Area  Council,   2014)   •  The  largest  growth  of  any  metro  center  in  the  United   States  between  2000  and  2010  (US  Census  Bureau,  2012)     Fast  growing  population  accelerates   anthropogenic  effects  
  5. •  There  are  many  water  quality  indicators:    total  suspended

     solids,  conductivity,  erosivity,  metals,  fecal  coliform,  nutrient   loading  (Booth  et  al.,  2004)…   •  Phosphorus  is  an  indicator  of  nutrient  loading       Phosphorus:  A  water  quality  indicator  
  6. •  Other  factors  influencing  water  quality   •  These  will

     be  used  as  control  variables  in  the  statistical   models   •  Account  for  seasonal  variability   •  Averages  will  be  used  to  remove  these  variations.       Other  factors  influencing  water  quality  
  7. •  Focus  on  numerous  stream  health  indicators  (Booth  et  al.,

      2004;  Halstead  et  al.,  2014)   •  Look  at  the  impact  of  development  on  specific  water   quality  variables  such  as  nitrogen,  phosphorus,  and   sediment  (Coulter  et  al.,  2004;  Zampella  et  al.,  2007).     •  Impervious  surface  and  how  the  nutrient  loading  is   affected  when  impervious  surface  area  increases  (Dietz   and  Clausen,  2008).       Previous  Research  on  the  relationship   between  water  quality  and  development  
  8. •  Viewing  landscape  in  the  sense  of  spatial  configuration  

    (McGarigal,  1994  &  Gustafson,  1998).   •  Examining  spatial  patterns  of  land  cover  types.   •  Originally  used  to  look  at  ecological  landscapes;  forests,   wetlands,  prairie  lands,  etc.   •  Innovative  approach:  Examining  patterns  of  development   using  class  metrics.   •  Landscape  metrics  are  selected  on  basis  in  literature  as   well  as  how  valuable  they  are  to  current  and  future  policy.   •  7  specific  metrics  are  analyzed  using  FRAGSTATS  and   ArcMap10.2   Examining  development  class  metrics  
  9. Patch  Number  &  Patch  Density   FRAGSTATS   low  PN:

     3 low  PD:  15  per  100  ha high  PN:  6 high  PD:  29  patches  per  100  ha
  10. Controls   Dependent     Variable   Independent   Variables

      Conceptual  Model   •  Forest •  Wetlands •  High intensity development •  Low intensity development •  Cultivated crops Land Cover Controls •  Total phosphorous Water Quality •  Proximity to river/ stream •  Average area •  Contiguity •  Patch number •  Patch density •  Largest patch index •  Percentage of like adjacencies Class Metrics •  Precipitation •  Contributing drainage •  Watershed area •  Septic systems count Environmental Controls
  11. Propor%on  of  Landscape:   Low  Intensity  Development:  15.0%   High

     Intensity  Development:  8.9%   Wetland:  7.1%   Forest:  6.7%   CulLvated  Crops:  6.0%  
  12. Sep%c  System  Diagnos%cs   Mean   388.9  sepLc  systems  

    Range   0-­‐2149  sepLc  systems  
  13. •  Due  to  the  hydrology  of   the  area,  the

     watersheds   have  a  nesting  pattern.   Nesting  Watersheds  
  14. FRAGSTATS Study Area OSSF (H-GAC) 2010 Land Cover Data (NOAA-CCAP

    ) DEM Houston/ Galveston Region (NHDPlusV2) TCEQ Gauge Points (all valid gauges within Houston/ Galveston Region) Reclassify •  Wetlands •  Cultivate Crops •  Forest •  High intensity development •  Low intensity development Delineate GEODA: Spatial Lag Model (7 models total) Independent Variables Compute class metrics: •  Average area •  Contiguity •  Patch number •  Patch density •  Largest patch index •  Percentage of like adjacencies Compute class metrics: •  Proximity to river/stream STATA Dependent Variable •  Total phosphorus Precipitation (NOAA Climatological Data; TNRIS) Controls •  Wetlands Percent •  Cultivate Crops Percent •  Forest percent •  High intensity development percent •  Low intensity development percent •  Septic system count •  Contributing drainage •  Precipitation •  Watershed Area ArcMap FRAGSTATS STATA Watersheds
  15. Patch  Density*   ConLguity   Largest  Patch  Index   Proximity

     to  streams   Patch  Number   Average  Patch  Area   Percent  of  Like   Adjacencies   Low  Intensity  Development   Metrics  Models   Control  Variables   1. High  Intensity  Development   ProporLon   2. Low  Intensity  Development   ProporLon   3. Forests  ProporLon   4. Wetlands  ProporLon   5. CulLvated  Crops  ProporLon   6. Watershed  area   7. Count  of  sepLc  systems   within  watershed   8. PrecipitaLon   9. ContribuLng  Drainage     *Patch  Density  has  high   collinearity  that  cannot  be   removed    
  16. •  P<0.05:  *;  P<0.001:  **   Low  Intensity  Development  Models

      Low  Intensity   Development  Metric   Coefficient   Z-­‐value   Patch  Number   0.0000769   1.016   Patch  Density   0.06566   3.6160**   Average  Patch  Size   -­‐0.9574   -­‐2.3085*   Average  Contiguity   -­‐8.4063   -­‐1.8876  (p=0.059)   Percent  of  like   adjacencies   -­‐0.03608   -­‐2.1616*   Largest  Patch  Index   -­‐0.08155   -­‐1.3988   Average  proximity  of   patch  to  streams   0.268285   1.3812  
  17. •  P<0.05:  *;  P<0.001:  **   Low  Intensity  Development  Models

      Low  Intensity   Development  Metric   Coefficient   Z-­‐value   Patch  Number   0.0000769   1.016   Patch  Density   0.06566   3.6160**   Average  Patch  Size   -­‐0.9574   -­‐2.3085*   Average  Contiguity   -­‐8.4063   -­‐1.8876  (p=0.059)   Percent  of  like   adjacencies   -­‐0.03608   -­‐2.1616*   Largest  Patch  Index   -­‐0.08155   -­‐1.3988   Average  proximity  of   patch  to  streams   0.268285   1.3812  
  18. •  Average  Patch  Area  (-­‐,p<0.05):  greater  the  average  patch  

    size,  lower  the  phosphorus  levels  –  greater  patches  means  less  edges   and  less  of  a  way  to  enter  stream.   •  Patch  Density(+,p<0.001):  high  patch  density  means  high   phosphorus  levels  –  more  patches  per  area,  greater  the  anthropogenic   impacts  (Carle  et  al.,  2005).   •  Percent  of  Like  adjacencies  (-­‐,p<0.05):  higher  PLADJ  means   more  aggregated  patches  and  therefore  lower  phosphorus  levels.   •  Contiguity(-­‐,p<0.1):  The  more  continuous  a  patch  is,  the  lower  the   phosphorus  levels  –  more  continuous  patches  means  less   fragmentation.   Low  Intensity  Model  Results  
  19. Forest  ProporLon   CulLvated  Crops   ProporLon   Watershed  Area

      Count  of  SepLc  Systems   High  Intensity   Development  ProporLon   Low  intensity  development   proporLon   Wetland  ProporLon   Control  variables  from  ALL  models       ContribuLng  Drainage   PrecipitaLon  
  20. Forest  Proportion   Cultivated  Crops   Proportion   Watershed  Area

      Count  of  Septic  Systems   High  Intensity   Development  Proportion   Low  intensity   development  proportion   Wetland  Proportion   Control  variables  from  ALL  models  with   significant  relationships  with  phosphorus  levels       Contributing  Drainage   Precipitation  
  21. •  High  intensity  development  proportion(-­‐,p<0.05)   •  Low  intensity  development

     proportion(+,p<0.05)   •  The  difference  seen  between  the  high  intensity  and   low  intensity  proportion  is  driven  by  use  of  lawn   fertilizer.   •  In  2011  the  amount  of  phosphorus  based  fertilizer   purchased  in  Texas  was  144,209,000  kg  of  P2 O5 .   Control  variables  from  both  low  intensity   and  high  intensity  models  
  22. On  a  watershed  scale:   Proportion  of  Landscape:   Low

     Intensity  Development:  29.4%   High  Intensity  Development:  20.5%   Wetland:  0.1%   Forest:  5.3%   Cultivated  Crops:  0.02%  
  23. What  does  this  mean   specifically:   Metric   1

     unit  increase  in  metric   results  in  change  in   phosphorus  levels  (on   average)   Average   patch  size   -­‐1.0357  mg/l   Patch   Density   0.071  mg/l   Percent  of   like   adjacencies   -­‐0.0.39  mg/l   Contiguity   -­‐9.094  mg/l     1%  increase  in  percent  of  like   adjacencies  results  in  a   decrease  on  average  in  -­‐0.039   mg/l  of  phosphorus.     1%  increase  in  patch  density   (number/KM)  results  in  0.071   mg/l  increase  of  phosphorus      
  24. •  Use  of  phosphorus  based  fertilizers  by  individual   home

     owners  can  have  a  large  impact  on  the  level  of   phosphorus  in  the  streams  in  the  Galveston  Bay   Estuary.   •  Developing  in  a  less  fragmented  manner  has  positive   effects  on  the  phosphorus  levels.     Concluding  thoughts  
  25. •  Create  regulations  to  reduce  the  amount  of   phosphorus

     based  fertilizers  used  at  urban  homes.     •  Ideal  Metrics  for  low  intensity  development   •  Less  patches  per  landscape  (lower  PD)   Policy  Recommendations  
  26. •  Create  regulations  to  reduce  the  amount  of   phosphorus

     based  fertilizers  used  at  urban  homes.     •  Ideal  Metrics  for  low  intensity  development   •  Less  patches  per  landscape  (lower  PD)   •  Higher  percent  of  like  adjacencies   Policy  Recommendations  
  27. •  Create  regulations  to  reduce  the  amount  of   phosphorus

     based  fertilizers  used  at  urban  homes.     •  Ideal  Metrics  for  low  intensity  development   •  Less  patches  per  landscape  (lower  PD)   •  Higher  percent  of  like  adjacencies   •  High  contiguity  index   Policy  Recommendations  
  28. •  Create  regulations  to  reduce  the  amount  of   phosphorus

     based  fertilizers  used  at  urban  homes.     •  Ideal  Metrics  for  low  intensity  development   •  Less  patches  per  landscape  (lower  PD)   •  Higher  percent  of  like  adjacencies   •  Higher  contiguity  of  patches   •  Larger  average  patch  area   •  Less  fragmented  landscape  in  general   Policy  Recommendations  
  29. •  Look  at  a  larger  study  area  –  the  sample

     size  and   spatial  extent  of  this  study  is  potentially  limiting.     •  Evaluate  a  larger  number  of  class  metrics  –  more   metrics  can  help  develop  a  more  inclusive  picture  of   the  spatial  development  patterns.   •  Look  at  other  water  quality  indicators.   Next  steps  for  the  future  
  30. Acknowledgements   •  Thank  you  to  my  master’s  advisory  committee:

     Dr.   Samuel  Brody,  Dr.  Wesley  Highfield,  Dr.  Antonietta   Quigg.   •  Research  funded  by  Texas  A&M  Galveston  2  year   competitive  graduate  merit  fellowship.   •  Thank  you  to  all  my  lab  mates  in  the  Center  for  Texas   Beaches  and  Shores.  
  31. *  In  addition,  there  are  different  forestry  patch  metrics  that

     are   shown  to  have  a  positive  relationship  with  total  phosphorus.  For   instance,  Lee  et  al.,  (2009)  showed  that  there  was  a  positive   relationship  of  TP  with  patch  density  and  the  study  resulted  in   saying  that  the  less  fragmented  but  more  complex  the  forest   area  is  seems  to  preserve  the  water  quality  the  best.  This  study   went  on  to  state  that  the  degradation  of  water  quality  can  come   not  only  from  increasing  urban  lands  but  also  decreasing  the   quality  of  the  remaining  forests  that  have  not  been  converted   into  urban  lands  (Lee  et  al.,  2009).  The  summation  of  this  is  to   say  that  highly  fragmented  forests  do  not  function  as  a  filter  to   provide  the  generally  understood  negative  relationship  with   total  phosphorus  as  is  shown  in  numerous  other  studies  .   Forest  Relationship  
  32. •  Models  from  LID&HID  Control  Variables:  Coefficients   and  z-­‐values.

      •  P<0.05:  *;  P<0.01:  **;  P<0.001:  ***   Control  Variables  from  Models  
  33. •  Historically,  pollution  from  runoff  has  been  a  large  

    contributor  to  poor  stream/  river  water  quality.   •  Urban-­‐related  runoff  is  one  of  the  top  five  largest   contributors  to  river/stream  impairment  in  TX  (USEPA;   2010)   •   Non-­‐point  source  pollution   Anthropogenic  sources  pollute  streams  
  34. •  There  are  4  metrics  significant  in  LID  model.  

    •   There  is  1  metric  significant  in  HID  model.   •  Multiple  controls  are  significant  with  the  most   interesting  being  proportion  of  High  intensity   development  (-­‐)  and  proportion  of  low  intensity   development  (+)   Discussion  of  Results  
  35. 1.  Different  spatial  scales   2.  How  to  measure  phosphorus

      3.  How  to  define  watersheds   4.  Measuring  and  quantifying  development  in  a  landscape   Considerations  for  methodology  
  36. •  Determining  an  appropriate  spatial  scale  for  these   studies

     is  critical,  as  different  spatial  scales  may  show   varying  relationships  between  water  quality   indicators  and  urban  land  cover  (Dietz  and  Clausen,   2008)   •  Small  and  large  scale  studies  are  done  with  differing   levels  of  detail.   Consideration  1:  Different  spatial  scales    
  37. •  Buffer  zone  vs.  watershed  approach   •  Evaluating  one

     watershed  can  allow  for  more  detail   and  potentially  less  assumptions.   •  Fewer  watersheds  can  be  used  to  study  small  details   within  a  watershed,  a  greater  number  of  samples  are   needed  for  statistical  validity  when  looking  at  large-­‐ scale  correlations.   Spatial  Scales    
  38. •  The  proportion  of  land  cover  in  watershed  is  

    important  to  control  for.   •  Agriculture  is  positively  correlated  with  total   phosphorus.   •  Forest  is  negatively  correlated  with  total  phosphorus   however,  there  can  be  a  positive  relationship   depending  on  level  of  fragmentation   •  Wetlands  retain  a  lot  of  input  phosphorus  and  reduce   the  nutrient  loading  to  the  streams.   Differing  land  cover  types  
  39. •  The  tradeoff  is  to  choose  1  water  quality  variable

     and   many  metrics  or  vice  versa   •  Precipitation   •  Seasonal  variability   •  Other  water  quality  variables  (need  to  have  a  long   and  constant  record  of  measurement)   Consideration  2:  How  to  measure   phosphorus  
  40. •  Phosphorus  fertilizers  are  applied  to  urban  lawns  and  

    subsequently  are  contained  in  the  runoff  into   streams/rivers.   •  In  2011  the  amount  of  phosphorus  based  fertilizer  was   144,209,000  kg  (P2O5  which  is  44%  phosphorus)   •  Phosphorus  is  the  limiting  nutrient  for  algal  growth   and  can  lead  to  algal  blooms.   Phosphorus  
  41. •  Used  delineation  method  instead  of  predefined  units   to

     have  an  ecosystems  approach.   •  Allows  the  area  of  the  study  watersheds  to  be   controlled  by  hydrologic  environment.   Consideration  3:  How  to  delineate   watersheds  
  42. •  Used  a  hydrologically  corrected  DEM  from  NHDPlusV2   • 

    From  this  DEM  the  flow  direction  grid  is  created  from   which  the  accumulation  grid  is  generated.   •  Used  burn-­‐in  components  to  help  solve  some   inaccuracies  of  elevation  data.   •  Defines  locations  of  stream  network  by  force.   NHDPlusV2  DEM  
  43. •  Urban  development  vs  impervious  surface   •  High  intensity

     development  vs  low  intensity   development   •  General  negative  relationship  between  urban  land   cover  and  water  quality.   •  Positive  relationship  between  phosphorus  and  urban   land  (Tong  and  Chen,  2002  &  Ahearn  et  al.,  2005)   Consideration  4:  measuring  and   quantifying  development  in  landscape  
  44. •  Use  GEODA  to   examine  spatial   lag  model.

      •  Weights  matrix   using  minimum   distance   threshold  of   4.28  miles   Statistical  Analysis  
  45. ni  =  number  of  patches  in  the   landscape  of

     class  i   A  =  total  landscape  area  (m)   ni  =  number  of  patches  in  the   landscape  of  class  type  i.   aij  =  area  of  patchij   ni  =  number  of   patches  in  landscape   of  patch  type  (class)i   Cijr  =  contiguity  value  of  r   pixel  r  in  patch  ij   V  =  sum  of  values  in  a  3x3   cell  template   Aij   *  =  area  of  patch  ij  in   terms  of  number  of  cell   aij  =  area  (m2  )  of  patch  ij   A  =  total  landscape  area  (m2).   gij  =  number  of  like  adjacencies   (joins)  between  pixels  of  patch   type  (class)  I  based  on  the   double-­‐count  method.   gik  =  number  of  adjacencies   (joins)  between  pixels  of  patch   type  (classes)  I  and  k  based  on   the  double  count  method.  
  46. DEPENDENT:     •  Total  Phosphorus  (averaged   over  2010-­‐2013)

      CONTROLS:   1.  High  Intensity  Development   Proportion   2.  Low  Intensity  Development   Proportion   3.  Forests  Proportion   4.  Wetlands  Proportion   5.  Cultivated  Crops  Proportion   6.  Total  Length  of  Stream   within  watershed   7.  Count  of  septic  systems   within  watershed   8.  Precipitation   9.  Contributing  Drainage   INDEPENDENT:   •  Class  Metrics              (PN,  PD,  AREA_MN,  CONTIG,    LPI,  PLADJ,  PROXIMITY)     Variables  included  in  model  
  47. Patch  Density   Contiguity   Largest  Patch  Index   Proximity

     to   streams   Patch  Number   Average  Patch  Area   Percent  of  Like   Adjacencies   High  Intensity   Development  Metrics   Models   Control  Variables   1. High  Intensity  Development   Proportion   2. Low  Intensity  Development   Proportion   3. Forests  Proportion   4. Wetlands  Proportion   5. Cultivated  Crops  Proportion   6. Watershed  area   7. Count  of  septic  systems   within  watershed   8. Precipitation   9. Contributing  Drainage      
  48. •  Models  from  HID:  Coefficients  and  z-­‐values.   •  P<0.05:

     *;  P<0.01:  **;  P<0.001:  ***   High  Intensity  Development  Models  
  49. •  Largest  Patch  Index(-­‐,p<0.05):  The  bigger  the  largest  patch,  

    the  lower  the  phosphorus  levels  –  increased  fragmentation  (smaller  and   more  numerous  patches)  increases  phosphorus  levels.   High  Intensity  Model  Results