Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
47k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
380
スタートアップで役割をまっとうする技術
tkengo
0
130
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
220
toypoインフラリプレースのお話
tkengo
0
22
機械学習を始めるための第一歩
tkengo
0
240
レポート化の落とし穴
tkengo
0
130
PHP and sometimes Machine Learning
tkengo
3
1.1k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
550
指数の裏側
tkengo
1
380
Other Decks in Technology
See All in Technology
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
1
310
2024年活動報告会(人材育成推進WG・ビジネスサブWG) / 20250114-OIDF-J-EduWG-BizSWG
oidfj
0
260
GoogleのAIエージェント論 Authors: Julia Wiesinger, Patrick Marlow and Vladimir Vuskovic
customercloud
PRO
0
190
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
220
生成AIのビジネス活用
seosoft
0
110
デザインシステムを始めるために取り組んだこと - TechTrain x ゆめみ ここを意識してほしい!リファクタリング勉強会
kajitack
2
200
30分でわかる「リスクから学ぶKubernetesコンテナセキュリティ」/30min-k8s-container-sec
mochizuki875
3
450
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
370
2024AWSで個人的にアツかったアップデート
nagisa53
1
110
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
250
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!事例のご紹介+座学②
siyuanzh09
0
120
メールヘッダーを見てみよう
hinono
0
120
Featured
See All Featured
Six Lessons from altMBA
skipperchong
27
3.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
Documentation Writing (for coders)
carmenintech
67
4.5k
Building Your Own Lightsaber
phodgson
104
6.2k
It's Worth the Effort
3n
183
28k
4 Signs Your Business is Dying
shpigford
182
22k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
870
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Code Reviewing Like a Champion
maltzj
521
39k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/