Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
460
スタートアップで役割をまっとうする技術
tkengo
0
200
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
330
toypoインフラリプレースのお話
tkengo
0
80
機械学習を始めるための第一歩
tkengo
0
290
レポート化の落とし穴
tkengo
0
190
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
610
指数の裏側
tkengo
1
580
Other Decks in Technology
See All in Technology
AI時代、1年目エンジニアの悩み
jin4
1
150
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
GCASアップデート(202510-202601)
techniczna
0
250
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
370
20260129_CB_Kansai
takuyay0ne
1
270
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
Deno・Bunの標準機能やElysiaJSを使ったWebSocketサーバー実装 / ラーメン屋を貸し切ってLT会! IoTLT 2026新年会
you
PRO
0
230
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
0
280
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
490
AI推進者の視点で見る、Bill OneのAI活用の今
sansantech
PRO
2
320
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
190
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
210
Featured
See All Featured
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
310
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
630
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
270
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
49k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/