Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
450
スタートアップで役割をまっとうする技術
tkengo
0
190
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
330
toypoインフラリプレースのお話
tkengo
0
72
機械学習を始めるための第一歩
tkengo
0
290
レポート化の落とし穴
tkengo
0
190
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
600
指数の裏側
tkengo
1
570
Other Decks in Technology
See All in Technology
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
6
960
Redshift認可、アップデートでどう変わった?
handy
1
130
First-Principles-of-Scrum
hiranabe
3
1.5k
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
350
ファインディにおけるフロントエンド技術選定の歴史
puku0x
0
190
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
700
Claude Codeを使った情報整理術
knishioka
20
12k
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
540
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
24
11k
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
720
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
130
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
110
The agentic SEO stack - context over prompts
schlessera
0
580
A Modern Web Designer's Workflow
chriscoyier
698
190k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
74
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Navigating Weather and Climate Data
rabernat
0
65
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
48
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/