Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
47k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
350
スタートアップで役割をまっとうする技術
tkengo
0
110
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
200
toypoインフラリプレースのお話
tkengo
0
6
機械学習を始めるための第一歩
tkengo
0
220
レポート化の落とし穴
tkengo
0
110
PHP and sometimes Machine Learning
tkengo
3
1.1k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
530
指数の裏側
tkengo
1
340
Other Decks in Technology
See All in Technology
Kubernetes Summit 2024 Keynote:104 在 GitOps 大規模實踐中的甜蜜與苦澀
yaosiang
0
270
品質の高い機能を”早く”提供するために技術的な面でチームでやったこと、やりたいこと
sansantech
PRO
2
230
KMPプロジェクトでマニュアルDIを使う選択
rmakiyama
0
120
バイセルにおけるAI活用の取り組みについて紹介します/Generative AI at BuySell Technologies
kyuns
1
200
ガチ勢によるPipeCD運用大全〜滑らかなCI/CDを添えて〜 / ai-pipecd-encyclopedia
cyberagentdevelopers
PRO
2
140
【LT】ソフトウェア産業は進化しているのか? -Javaの想い出とともに- #jjug_ccc
takabow
0
150
ガバメントクラウド単独利用方式におけるIaC活用
techniczna
3
180
AIを使って小説を書こう!【2024/10/25講演資料】
kamomeashizawa
0
160
Nix入門パラダイム編
asa1984
1
160
Jamstack でリニューアルするグリーグループのメディア
gree_tech
PRO
2
220
サイバーエージェントにおける生成AIのリスキリング施策の取り組み / cyber-ai-reskilling
cyberagentdevelopers
PRO
1
130
「最高のチューニング」をしないために / hack@delta 24.10
fujiwara3
15
2.7k
Featured
See All Featured
A designer walks into a library…
pauljervisheath
202
24k
Side Projects
sachag
452
42k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Making the Leap to Tech Lead
cromwellryan
132
8.9k
What's new in Ruby 2.0
geeforr
342
31k
Git: the NoSQL Database
bkeepers
PRO
425
64k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
Testing 201, or: Great Expectations
jmmastey
38
7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
225
22k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
328
21k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
46
2.1k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
7.9k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/