Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
430
スタートアップで役割をまっとうする技術
tkengo
0
180
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
300
toypoインフラリプレースのお話
tkengo
0
55
機械学習を始めるための第一歩
tkengo
0
280
レポート化の落とし穴
tkengo
0
170
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
580
指数の裏側
tkengo
1
510
Other Decks in Technology
See All in Technology
知られざるprops命名の慣習 アクション編
uhyo
11
2.8k
DuckDB-Wasmを使って ブラウザ上でRDBMSを動かす
hacusk
1
130
Kiroと学ぶコンテキストエンジニアリング
oikon48
4
940
AWS環境のリソース調査を Claude Code で効率化 / aws investigate with cc devio2025
masahirokawahara
2
920
Yahoo!ニュースにおけるソフトウェア開発
lycorptech_jp
PRO
0
600
AWSで推進するデータマネジメント
kawanago
0
680
トヨタ生産方式(TPS)入門
recruitengineers
PRO
5
1.4k
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
400
Nstockの一人目エンジニアが 3年間かけて向き合ってきた セキュリティのこととこれから〜あれから半年〜
yo41sawada
0
110
新規案件の立ち上げ専門チームから見たAI駆動開発の始め方
shuyakinjo
0
620
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
220
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
400
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Optimizing for Happiness
mojombo
379
70k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Become a Pro
speakerdeck
PRO
29
5.5k
Facilitating Awesome Meetings
lara
55
6.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
11
1.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Thoughts on Productivity
jonyablonski
69
4.8k
Designing for humans not robots
tammielis
253
25k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/