Upgrade to Pro — share decks privately, control downloads, hide ads and more …

表現学習時代の生成語彙論ことはじめ @PFIセミナー

Yuya Unno
October 16, 2014

表現学習時代の生成語彙論ことはじめ @PFIセミナー

Yuya Unno

October 16, 2014
Tweet

More Decks by Yuya Unno

Other Decks in Technology

Transcript

  1. The Generative Lexicon [Pustejovsky95] !  James PustejovskyĀdž !  ÄƸA4;ƟDA)Q4% -

    !  TimeML:ĀdžŽ4EĐL !  „Å; ¿Ó813:ÚP %Iƙ03-:4<0K %- > ÊÌ5¥% http://www.cs.brandeis.edu/~jamesp/
  2. Æ8ħă8%-´ē !  ·¦ǍƆ—ÐŇǖÊůĦ[·¦05]:Û12 ƽ !  James Pustejovsky, Introduction to Generative

    Lexicon. [Pustejovsky05] !  ě„ƲëGenerative Lexicon:NjÇ [ě„ 06] 76
  3. Ňǖ:ĝŃļŋWU|Rļŋ5E:P ăL ŇPń­'LƠÎGł:ğ 1.  ļÐWU|RConstitutive !  ƋēG£Ć76Œ4ˆÒ3LPā' 2.  řĚWU|RFormal ! 

    +MŒ7:‡ì:NjōPā' 3.  ²¢WU|RTelic !  ÁĊG²¢Pā' 4.  ƱWU|RAgentive !  +MP—Bˆ'¾ÿGÄƉPā' 7=
  4. ŗ ò:WU|Rļŋ 7? 1. ļÐ `Syǀ k€g}  2. řĚ

    ŀKîÁ nj  3. ²¢ ŀLĄĩ 'L  4. Ʊ æB©3L ÿL  @1AKN`KBC0 L4GM*!J&DIBQS[^T
  5. Ƈő ƿǏ:ƤøPįŁ'L5Y€f87L  !  Ɯö;ä8LE:5ƿǏ:ƤøPįŁ%3L !  ƶ8ärbg8703-Jƭǎ:^| o;­J8ÀŪ 1Ƨ:åŇĭ¸5:PGK-9 

    87 ƭǎ ä4Dž3-Q.I Ɯö4 lhtS  60/ ä4 Ɯö4  ƭǎ .Jä:†8LƜö:†.I  \^[]U5@CLASSICAOP
  6. Statistical Semantics:#J !  ŹŴƄŇ:ˆÓǔ°76:IJè¢7ÎŃJ+:Ň: ÊůPăL !  ‹ƚ‘øGhz{}ibf76:’¯¹JML 9: Statistical Semantics

    is the study of "how the statistical patterns of human word usage can be used to figure out what people mean, at least to a level sufficient for information access”(ACL wiki)
  7. —ÐŇǖĦ5Statistical Semantics:¨Ē !  —ÐŇǖĦ !  ĝ¡:đǓ8LƄŇ:ˆÓ:ÊůPă3L !  5+:I7ģµPĸ!'-D:Ňǖ:ļ ŋPă3L ! 

    Statistical Semantics !  ŹŴƄŇ:‘Ɯ8I03‰Ɣ¢7+:ƄŇ:Êů Pă3L !  ƀ±¢7ƄŇ:ˆÓ8›'LÊů8åſ%37 ®J'LI 9<
  8. Principle of compositionality (Frege1892] … the meaning of a complex

    expression is determined by the meanings of its constituent expressions and the rules used to combine them (wikipedia )          9=
  9. åŇĭ¸;ĸÔņ :;  4 nW^} Tb[ ¤‘ ǂ źř ŸƑ

    ƄŇ –Ú æB‡ L ‘ø'L ¿Ó  ƄŇ o~] đ M- M-
  10. ęÐP¿ÓrWf}85K!C [Tsubaki+13] !  ƪƪ8ŕŢPſ@%3¥%rWf}PÿL !  4-rWf}JÊů:Ð‹OML :> run companyM Mrun

    companyM JMrun company LOQ runM JMcompany Mcompany run LOQ run companyM)" '48 
  11. ƄŇ:Ð8›'L1:ŁÔ !  —ÐŇǖĦ !  åŇÓłPűƘ%3Awe}µ%I5'L īB !  Ť:׸we} !  űƘ#M-åŇe`P‡’ń­'LI7we

    }:ŬƘ !  ¿Ó½Ǝųšƕ½Ǝų !  ļÐ5¿Ó:½ƎP™8‹5%3L !MJ:RSeR;ƞţ8¨Ē%3L :?
  12. ħăđƫ (1/3) !  [Pustejovsky95] James Pustejovsky. The Generative Lexicon. MIT

    Press. !  [·¦05] ·¦ǍƆ. (4+$. N%ˆư !  [Pustejovsky05] James Pustejovsky. Introduction to Generative Lexicon. Foundations of SemanticsƩĺ´ē. http://www.cs.brandeis.edu/~jamesp/classes/LING130/ !  [ě„06] ě„Ʋë. Generative Lexicon2. Ɛ:ğ†NJ̓:ŏÌƈ ;8
  13. ħăđƫ(2/3) !  [Cimiano+07] Philipp Cimiano, Johanna Wenderoth. Automatic Acquisition of

    Ranked Qualia Structures from the Web. ACL2007 !  [ĻŖ+12] ĻŖ˜ƨ, ·Šť, ě„Ʋë. (4$ (!'&)  . 0. NLP2012. !  [Mitchell+08] Jeff Mitchell, Mirella Lapata. Vector-based Models of Semantic Composition. ACL2008. !  [Socher+12] Richard Socher, Brody Huval, Christopher D. Manning, Andrew Y. Ng. Semantic Compositionality through Recursive Matrix-Vector Spaces. EMNLP2012. ;9
  14. ħăđƫ(3/3) !  [Cruys+13] Tim Van de Cruys, Thierry Poibeau, Anna

    Korhonen. A Tensor-based Factorization Model of Semantic Compositionality. NAACL2013. !  [Kalchbrenner+14] Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom. A Convolutional Neural Network for Modelling Sentences. ACL2014. !  [Zelier+14] Matthew D. Zeiler, Rob Fergus. Visualizing and Understanding Convolutional Networks. ECCV2014. !  [Tsubaki+13] Masashi Tsubaki, Kevin Duh, Masashi Shimbo, Yuji Matsumoto. Modeling and Learning Semantic Co-Compositionality through Prototype Projections and Neural Networks. EMNLP2013 ;: