Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

深層学習フレームワーク Chainerとその進化

深層学習フレームワーク Chainerとその進化

Yuya Unno

April 06, 2017
Tweet

More Decks by Yuya Unno

Other Decks in Technology

Transcript

  1. ニューラルネットの学習⽅法 1. ⽬的関数の設計 l RNNなどを利⽤して⾃分で設計 2. 勾配の計算 l ⾃動で計算できる(これから説明) 3.

    最⼩化のための反復計算 l ライブラリが提供してくれる 4 1さえ設計すれば残りは ほぼ⾃動化されている
  2. 計算グラフの例 z = x ** 2 + 2 * x

    * y + y 6 x y _ ** 2 2 * _ _ * _ _ + _ z _ + _
  3. 計算グラフの作成戦略 define-and-runとdefine-by-run l define-and-run(静的グラフ) l まず計算グラフを構築し、構築した計算グラフにデータを流すと いう、2ステップから成る l Caffe, theano,

    TensorFlowなど l define-by-run(動的グラフ) l 通常の⾏列演算をする感覚で順伝播処理をすると同時に、逆伝播 ⽤の計算グラフが構築される l Chainer, DyNet, PyTorchなど 8
  4. 擬似コードで⽐較する define-and-run # 構築 x = Variable(‘x’) y = Variable(‘y’)

    z = x + 2 * y # 評価 for xi, yi in data: eval(z, (xi, yi)) define-by-run # 構築と評価が同時 for xi, yi in data: x = Variable(xi) y = Variable(yi) z = x + 2 * y 9 データを⾒ながら 違う処理をしてもよい
  5. l 2015/04 Chainer開発開始 l 2015/06 Chainer 1.0.0公開 l 2015/11 TensorFlow公開

    l 2017/01 ChainerMNの実験結果公表 l 2017/01 PaintsChainer公開 l 2017/02 ChainerRL公開 l 2017/03 Intel版Chainerのリポジトリが公開 l 2017/05 Chainer 2.0.0公開予定
  6. 24

  7. MKL-DNNはCPU向けの最適化された深層学習ライブラリ l MKL (Intel Math Kernel Library) l Intel製の数値計算ライブラリ l

    NumPyのバックエンドとして利⽤可能 l MKL-DNN l Intel CPU向けに最適化された深層学習ライブラリ l https://github.com/01org/mkl-dnn
  8. まとめ l Chainerは⾃由度の⾼い深層学習フレームワーク l Chainerの周辺で様々なプロジェクトが進⾏中 l ChainerMN:⼤規模分散学習 l ChainerRL:深層強化学習ライブラリ l

    Intel版Chainer:CPU向けの最適化 l 深層学習のみならず,HPCや⾼度な機械学習,コードの最適化な ど,様々な分野の専⾨家を求めています