Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習フレームワーク Chainerとその進化
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuya Unno
April 06, 2017
Technology
0
19
深層学習フレームワーク Chainerとその進化
Yuya Unno
April 06, 2017
Tweet
Share
More Decks by Yuya Unno
See All by Yuya Unno
深層学習で切り拓くパーソナルロボットの未来 @東京大学 先端技術セミナー 工学最前線
unnonouno
0
21
深層学習時代の自然言語処理ビジネス @DLLAB 言語・音声ナイト
unnonouno
0
42
ベンチャー企業で言葉を扱うロボットの研究開発をする @東京大学 電子情報学特論I
unnonouno
0
43
PFNにおけるセミナー活動 @NLP2018 言語処理研究者・技術者の育成と未来への連携WS
unnonouno
0
11
進化するChainer @JSAI2017
unnonouno
0
19
予測型戦略を知るための機械学習チュートリアル @BigData Conference 2017 Spring
unnonouno
0
18
深層学習による機械とのコミュニケーション @DeNA TechCon 2017
unnonouno
0
28
最先端NLP勉強会 “Learning Language Games through Interaction” @第8回最先端NLP勉強会
unnonouno
0
13
Chainer, Cupy⼊⾨ @Chainer meetup #3
unnonouno
0
17
Other Decks in Technology
See All in Technology
Azure SRE Agent x PagerDutyによる近未来インシデント対応への期待 / The Future of Incident Response: Azure SRE Agent x PagerDuty
aeonpeople
0
260
【インシデント入門】サイバー攻撃を受けた現場って何してるの?
shumei_ito
0
1.3k
AI時代、1年目エンジニアの悩み
jin4
1
130
Databricks Free Edition講座 データサイエンス編
taka_aki
0
270
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
450
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
5
1.7k
みんなだいすきALB、NLBの 仕組みから最新機能まで総おさらい / Mastering ALB & NLB: Internal Mechanics and Latest Innovations
kaminashi
0
170
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
660
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
1
600
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
200
ゼロから始めたFindy初のモバイルアプリ開発
grandbig
2
590
DatabricksホストモデルでAIコーディング環境を構築する
databricksjapan
0
220
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
Abbi's Birthday
coloredviolet
1
4.6k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Six Lessons from altMBA
skipperchong
29
4.1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Fireside Chat
paigeccino
41
3.8k
Agile that works and the tools we love
rasmusluckow
331
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Odyssey Design
rkendrick25
PRO
1
480
Transcript
深層学習フレームワーク Chainerとその進化 Preferred Networks 海野 裕也
http://chainer.org/
Chainerの⽬標 l ⾼い⾃由度で直感的に記述できる l ⼗分に⾼速に実⾏できる l 容易にデバッグできる 社内の深層学習の研究開発を加速させる 世の中
ニューラルネットの学習⽅法 1. ⽬的関数の設計 l RNNなどを利⽤して⾃分で設計 2. 勾配の計算 l ⾃動で計算できる(これから説明) 3.
最⼩化のための反復計算 l ライブラリが提供してくれる 4 1さえ設計すれば残りは ほぼ⾃動化されている
ニューラルネット=合成関数 l ベクトルに対して線形・⾮線形な関数をたくさん適⽤す る合成関数と捉えるとよい l 各ノードはベクトルを保持する変数 l 各関数はLSTMや線形和など様々 5 y
= h(g(f(x)))
計算グラフの例 z = x ** 2 + 2 * x
* y + y 6 x y _ ** 2 2 * _ _ * _ _ + _ z _ + _
誤差逆伝播によって勾配を計算できるのが重要 l 誤差逆伝播は連鎖律をつかって勾配を計算する l ニューラルネットのフレームワークはこれを⾃動で ⾏ってくれる 7 y’ = h’(g(f(x)))
g’(f(x)) f’(x)
計算グラフの作成戦略 define-and-runとdefine-by-run l define-and-run(静的グラフ) l まず計算グラフを構築し、構築した計算グラフにデータを流すと いう、2ステップから成る l Caffe, theano,
TensorFlowなど l define-by-run(動的グラフ) l 通常の⾏列演算をする感覚で順伝播処理をすると同時に、逆伝播 ⽤の計算グラフが構築される l Chainer, DyNet, PyTorchなど 8
擬似コードで⽐較する define-and-run # 構築 x = Variable(‘x’) y = Variable(‘y’)
z = x + 2 * y # 評価 for xi, yi in data: eval(z, (xi, yi)) define-by-run # 構築と評価が同時 for xi, yi in data: x = Variable(xi) y = Variable(yi) z = x + 2 * y 9 データを⾒ながら 違う処理をしてもよい
なぜ、⾃由度の⾼いフレームワークが必要か? 深層学習とは階層の深いだけではなくなってきている l 深いボルツマンマシン l 深い畳込みニューラルネットワーク l 再帰ニューラルネットワーク l 双⽅向再帰ネットワーク
l 注意機構 ⼿法⾃体がどんどん複雑化して、古いフレームワークは新⼿法を扱い づらくなっていく 10
研究開発・実⽤化を加速する様々なプロジェクトを紹介 l ChainerMN l 複数ノード上で分散計算するChainer l ChainerRL l Chainerを利⽤した深層強化学習ライブラリ l
Intel版Chainer l Intel CPU上で最適化されたChainer
l 2015/04 Chainer開発開始 l 2015/06 Chainer 1.0.0公開 l 2015/11 TensorFlow公開
l 2017/01 ChainerMNの実験結果公表 l 2017/01 PaintsChainer公開 l 2017/02 ChainerRL公開 l 2017/03 Intel版Chainerのリポジトリが公開 l 2017/05 Chainer 2.0.0公開予定
ChainerMN
ChainerMN Chainerの使いやすさはそのままに,複数GPU,複数ノード環境で⾼ 速に学習することができる GPU GPU InfiniBand GPU GPU InfiniBand
ノード内通信とノード間通信をそれぞれ最適化 InfiniBand MPI ChainerMN pyMPI NCCL NVIDIA GPU ノード内 ノード間
CuPy
既存のコードを多少書き換えるだけで利⽤できる optimizer = chainer.optimizers.MomentumSGD() optimizer = chainermn.DistributedOptimizer( chainer.optimizers.MomentumSGD())
GPUの数にほぼ⽐例した性能向上
実時間に対する学習速度も向上
他のフレームワークに⽐べても⾼速
None
ChainerRL
ChainerRL Chainerを使った深層強化学習フレームワーク https://github.com/pfnet/chainerrl
強化学習は試⾏錯誤で学習する⼿法 どうすればいいか(教師データ)を教えるのではなく,試 ⾏錯誤して正しい⽅法を探す学習⽅法 教師あり学習:いつペダルを踏むかを教える 強化学習:倒れずに前に進む⽅法を試⾏錯誤
24
深層学習が簡単になったため,⼿法が複雑化 Chainer 全部⾃作 深層学習 Chainer 深層学習 が複雑化 Chainer ChainerRL 深層学習
Intel版Chainer
ハードウェアの選択は速度だけが重要ではない l 利⽤シーンの違い l 運⽤コストの違い l 消費電⼒の違い
Intel版Chainer Github上でIntel CPU向けに最適化されたChainerの開発 が開始 https://github.com/intel/chainer
Intel CPU上でのChainer Chainer MKL-DNN MKL (Math Kernel Library) Intel CPU
MKL NumPy OpenBLAS/ATLAS NumPy
MKL-DNNはCPU向けの最適化された深層学習ライブラリ l MKL (Intel Math Kernel Library) l Intel製の数値計算ライブラリ l
NumPyのバックエンドとして利⽤可能 l MKL-DNN l Intel CPU向けに最適化された深層学習ライブラリ l https://github.com/01org/mkl-dnn
まとめ l Chainerは⾃由度の⾼い深層学習フレームワーク l Chainerの周辺で様々なプロジェクトが進⾏中 l ChainerMN:⼤規模分散学習 l ChainerRL:深層強化学習ライブラリ l
Intel版Chainer:CPU向けの最適化 l 深層学習のみならず,HPCや⾼度な機械学習,コードの最適化な ど,様々な分野の専⾨家を求めています
None