Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「おすすめコンペは何?」の答え方を真面目に考える / How to Choose Kaggle...
Search
Shotaro Ishihara
July 31, 2020
Technology
2
5.5k
「おすすめコンペは何?」の答え方を真面目に考える / How to Choose Kaggle Competitions
「Rist主催 Kaggle Workshop #1」での発表資料
https://rist.connpass.com/event/182932/
Shotaro Ishihara
July 31, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
140
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
35
JOAI2025講評 / joai2025-review
upura
0
400
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
42
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
250
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
68
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
72
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
340
Other Decks in Technology
See All in Technology
GitHub Copilot coding agent を推したい / AIDD Nagoya #1
tnir
4
4.7k
AIとTDDによるNext.js「隙間ツール」開発の実践
makotot
6
720
Webアクセシビリティ入門
recruitengineers
PRO
2
450
夢の印税生活 / Life on Royalties
tmtms
0
290
[CV勉強会@関東 CVPR2025 読み会] MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos (Li+, CVPR2025)
abemii
0
200
Goでマークダウンの独自記法を実装する
lag129
0
220
モバイルアプリ研修
recruitengineers
PRO
4
460
進捗
ydah
1
130
トヨタ生産方式(TPS)入門
recruitengineers
PRO
4
430
mruby(PicoRuby)で ファミコン音楽を奏でる
kishima
1
280
[OCI Skill Mapping] AWSユーザーのためのOCI(2025年8月20日開催)
oracle4engineer
PRO
2
150
Goss: Faiss向けの新しい本番環境対応 Goバインディング #coefl_go_jp
bengo4com
0
1.4k
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Being A Developer After 40
akosma
90
590k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
Code Reviewing Like a Champion
maltzj
525
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
「おすすめコンペは何?」 の答え方を真面目に考える u++, 2020年7月31日(更新:2021年6月21日) 1
Q. おすすめコンペは何? 2
Q. おすすめコンペは何? A. 人それぞれだと思います 3
発表の概要 「おすすめコンペは何?」という質問への自分なりの答え (2020年7月) 4
対象の聴衆 参加者:KaggleやSignateなどデータ分析コンペに参加経験 がある中級以上の方 比較的経験が浅めの方 回答内容自体が参考になれば嬉しい 比較的経験が豊富な方 回答方法自体が参考になれば嬉しい (資料のリンクを共有する形でご活用ください) 5
自己紹介 u++ (@upura0, sishihara) Kaggle PetFinderコンペ 1位、SIGNATE 糖尿病コンペ 3位、 Nishika
株主価値コンペ 2位 『Weekly Kaggle News』の発行 『PythonではじめるKaggleスタートブック』(講談社) 4.1「参加するコンペの選び方」の内容を掘り下げました 6
選ぶ上での観点 下記の点から、自分に合ったコンペを選ぶ 扱うデータの種類・サイズ タスクの種類 開催期間 メダルの有無 実行環境の制限 タスクの面白さ プラットフォームの性質 7
扱うデータの種類・サイズ 業務で使う?知的好奇心?利用可能な計算資源? テーブル 画像 テキスト 音声 強化学習 ※ 複数を扱う「マルチモーダル」なコンペも 8
タスクの種類 テーブル:分類・回帰 画像:分類・回帰・セグメンテーション・物体検出など テキスト:分類・回帰・質問応答など 9
開催期間 2〜3カ月くらいのコンペが多い 個人的なおすすめは、終了2週間前くらいの開催中のコンペ NotebookやDiscussionに情報が転がっている (Vote数でソート) 「良コンペ」か否かの評判も出ている 最後の順位開示の瞬間の一喜一憂がたまらない 終了後の上位解法が勉強になる 過去の良コンペも選択肢になり得る(後述) 10
メダルの有無 Kaggleではコンペごとに、メダルやポイントが獲得できる・ できないが設定されている 獲得できる方が、参加者の質が高く議論も活発で学びが得や すい傾向にある Kaggleでメダルが獲得できるコンペか否か確認する, u++の備忘録 11
実行環境の制限 コンペのルール 最近は実行環境の制限(処理内容・アクセラレータ・時間など) が設定されているコンペが増えている 個々人の計算資源 自分のパソコンのスペック、Kaggle Notebook、Google Colab、 クラウド課金 など
12
タスクの面白さ 背景や社会的意義 例:Deepfake Detection Challenge 現実で適用できるコンペ設計か? 例:NFL Big Data Bowl
機械学習が必要か? 例:ルールベースでは難しい、データが十分にある 評価指標 例:「運ゲー」になりづらいか? 13
プラットフォームの性質 Kaggle以外のプラットフォームも SIGNATE ProbSpace Nishika TopCoder atmaCup Quevico ※ Discussionの有無や情報開示の可否などに注意
14
おすすめ過去コンペ kaggler-ja wiki 自分の場合はPetFinderコンペ テーブル・画像・テキストのマルチモーダル 当時使わなかったBERTやEfficientNetで良いスコアが出 て面白い 人は良い成績だったコンペをおすすめしがち 15
コンペ情報を知る twitterのKaggleリスト 『Weekly Kaggle News』 16
まとめ Q. おすすめコンペは何? A. 自分に合ったコンペを選びましょう 扱うデータの種類・サイズ タスクの種類 開催期間 メダルの有無 実行環境の制限
タスクの面白さ プラットフォームの性質 17
By Marios Michailidis (KazAnova), KDD 2018 at London, from @0verfit
’s tweet 18
おまけ:賞金は? 時給換算して金銭面だけを見ると、割りに合わない場合がほ とんど 「たまにお金がもらえるネトゲ」くらいの位置づけ ※ Deepfake Detection Challengeくらいになると別 19
おまけ:個人的印象 SIGNATE:日本最大級だが、コンペの質に不安も。コンペご との情報開示の可否が明確になったが、成果物が公開できな い場合も多い。 ProbSpace:コンペ設計に工夫が見られる。優勝解法のピア レビュー制が面白い。最終提出選択がない。日本語。 Nishika:立ち上がり期で、オープンデータを用いたコンペが 多い。日本語。 Solafune:衛星データを題材にしたコンペを過去2度開催。 TopCoder:競技プログラミング。
atmaCup:最近は日本のKaggle Grandmaster/Masterが集結 し、しのぎを削っている。運営のサポートが手厚く、初学者 おすすめ度も高い。日本語。 Quevico:Discussionなし。日本語も対応。 20