Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RustとCADDi AI LabとML
Search
vaaaaanquish
June 10, 2022
Technology
1
1.1k
RustとCADDi AI LabとML
Rust、何もわからない... #2
https://estie.connpass.com/event/246429/
登壇資料です
vaaaaanquish
June 10, 2022
Tweet
Share
More Decks by vaaaaanquish
See All by vaaaaanquish
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
36
19k
LLMが機械学習分野と他分野に起こしたキャズムから見極めるエンジニアの未来像
vaaaaanquish
0
210
エムスリー流!難読クイズを作ってPythonの深淵に触れるコツ! - 技育CAMPアカデミア
vaaaaanquish
1
400
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
6
6.4k
Pythonのパッケージ管理の中級者の壁を超える stapy#98
vaaaaanquish
19
22k
Tech LT #4 人を選ぶ技術
vaaaaanquish
3
4.7k
CADDi AI LabにおけるマネージドなMLOps
vaaaaanquish
2
3.6k
機械学習OSSの変遷と未来
vaaaaanquish
2
4.6k
文字列(ダジャレを言いシャレ)
vaaaaanquish
1
17k
Other Decks in Technology
See All in Technology
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
180
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
460
re:Inventに行くまでにやっておきたいこと
nagisa53
0
1k
Databricks Free Editionで始めるMLflow
taka_aki
0
780
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
670
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
460
SOTA競争から人間を超える画像認識へ
shinya7y
0
690
激動の時代を爆速リチーミングで乗り越えろ
sansantech
PRO
1
250
初海外がre:Inventだった人間の感じたこと
tommy0124
1
190
Digitization部 紹介資料
sansan33
PRO
1
5.8k
MCP サーバーの基礎から実践レベルの知識まで
azukiazusa1
11
4.1k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
250
Featured
See All Featured
Docker and Python
trallard
46
3.6k
A Tale of Four Properties
chriscoyier
161
23k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
710
Automating Front-end Workflow
addyosmani
1371
200k
Context Engineering - Making Every Token Count
addyosmani
8
330
The Language of Interfaces
destraynor
162
25k
Navigating Team Friction
lara
190
15k
The Invisible Side of Design
smashingmag
302
51k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
How to Ace a Technical Interview
jacobian
280
24k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Writing Fast Ruby
sferik
630
62k
Transcript
RustとCADDi AI LabとML Rust、何もわからない... #2 2022/05/19 CADDi AI Lab Tech
Lead Shunsuke Kawai
I AM • CADDi, inc. AI Lab Tech Lead M3,
inc. Engineering Fellow Developers Guild Bolder’s Owner • OSS • XGBoost、LightGBM、Rust wrapper • gokart • xonsh Shunsuke Kawai (@vaaaaanquish)
AGENDA 1. CADDi AI LabでのRust 2. RustとCV/ML 3. まとめ
CADDi AI Lab × Rust
CADDi, inc. • Webアプリケーション開発 async-graphql, axum, diesel, tonic ...etc •
アルゴリズム開発 tract-onnx, rayon, tokio, wasm-bindgen ...etc • speakerdeckをチェック! https://caddi.connpass.com/event/239652/ https://caddi.connpass.com/event/243143/
WHY CADDi AI Lab × Rust • 図面における画像処理 • 2Dでも非常に大きい
A1,2サイズも、8000*6000pxとか • 非常にスパース • 速度、並列化、計算量意識がMust • 情報が潰れないよう捜査、ベクタライズ • 3Dデータについては言わずもがな
MEMBERS PdM/EM ex-PFN, NTT, Venture CTO DataEng ex-Yahoo! DataAnalyst AlgorithmEng
2D/3D Image Processing AtCoder Ranker MLEng ex-DeNA, M3, Mackinsey Kaggle Master Grand Master
from: Tech Talk slide for external audiences https://speakerdeck.com/caddi_eng/deiputoarugogatatuguwozu-mu-kiyadeitu-mian-jie-xi-falsetekufalserozinipo-ru-caddi Deep Learning
CASE: Image Processing to DNN • 図面を捜査し”矢印”候補を検出する • precisionが高くなるよう調整 • DeepLearningモデルでの0/1判定へ • Rustでの実現 • Pythonで学習したモデルをONNX形式へ • tract-ONNXでの推論 • rayonで全体を並列化
CASE • 他にもCASE色々 • nalgebra等を用いた画像処理アルゴリズム • Next.js, wasm-bindgenを利用したアノテーションツール、Viwer • CLIツール
• tokio APIサーバ 「はじめてのディープラーニング」をモブプロでRustで再実装してみたり 言語としてMLE/DEも学ぶ環境を用意している
RustとML
AWESOME RUST MACHINE LEARNING • Rustにおける機械学習モデルや画像処理、 自然言語処理に関する実装、論文、ブログ をまとめたrepogitory • 470starくらい
• 応用事例は大体書いてあると思う https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning
VOGUE • CV、NLP、検索エンジンが盛り上がっている • CV/MLは大きくDeep Learningの流行が続く • tch-rs, tensorflow/rust •
推論系のフレームワーク開発が継続/活発 • tract, orkhon, wonnx, onnxruntime-rs • こと”学習”においてはDeep Learning周辺の多くがPythonないし Pythonをターゲットにしたツール(DNNフレームワーク, GPU回り, ...) • C/C++、OpenCL、OpenGLがあり学習面では恩恵を受けづらい • 推論の高速化、省メモリ化、wasmによるプラットフォームの拡大
HOW • 独自のモデルファイル形式を通す • tch-rs • tensorflow/rust • ONNXを介す •
ONNX: Microsoft、Facebookが提案した DeepLearningモデル用の ファイルフォーマット及び周辺ツール • CADDiでも利用 (tract-ONNX) https://vaaaaaanquish.hatenablog.com/entry/2021/09/07/141531 https://github.com/dskkato/rust-machine-learning-api-example
ONNX in Rust • tract ◦ CPUに特化したONNXでの推論フレームワーク群 ◦ 独自のNNEF拡張な中間表現であるtract-oplを定義 ▪
trainingに関連する機能の削除 (decluttering) ▪ scan operatorによるユニットの繰り返し処理の削減 • orkhon ◦ ONNX or PythonランタイムをPyO3経由で叩く形式をサポートした推論フレームワーク ◦ tract, rayonにより高速な推論を実現 • onnxruntime-rs ◦ microsoft/onnxruntimeのrust wrapper ◦ Multi platform、WebGLによるGPU上での推論 • wonnx ◦ GPUをターゲットにしたPure RustなONNX推論ランタイム ◦ Vulkan/Metal/DX12を利用して各PlatformのGPU上で推論 https://github.com/sonos/tract https://www.reddit.com/r/rust/comments/s0vi54/ wonnx_deep_learning_on_webgpu_using_the_onnx/
tract / wonnx tract wonnx
まとめ
SUMMARY • CADDi AI Labが今面白い • Rust x MLの活用事例の多くが推論に寄っている •
ONNX関連のツールを紹介 .o0(rust wasmでwebGL CAD作る実験を個人的にしてるので、そこに載ると面白いだろうなあ…誰か手伝ってくれないかなあ…)
~ 未来を作ろう ~ Twitterを今すぐフォロー!