Upgrade to Pro — share decks privately, control downloads, hide ads and more …

#経済学のための実践的データ分析 10.1 #khcoder やwordcloud やMeCa...

#経済学のための実践的データ分析 10.1 #khcoder やwordcloud やMeCab やword2vecやtopic modelでテキスト分析しよう

一橋大学 経済学部 28番教室
#経済学のための実践的データ分析 10.1 #khcoder やwordcloud やMeCab やword2vecやtopic modelでテキスト分析しよう

yasushihara

July 04, 2019
Tweet

More Decks by yasushihara

Other Decks in Education

Transcript

  1. やること 1. KHCoder をインストールする 2. Dbpedia.org から SPARQL Endpoint 経由でデータセットを取得する

    • 前回の内容 3. Manaba からデータセットをダウンロードする 4. KHCoder に定点調査の自由記述データを読み込む 5. データ分析前の処理をする 6. 頻出語の取り出しを行う 7. 共起ネットワークを書く 8. 属性情報ごとの特徴を抽出する 9. 対応分析を行う 2019/7/3 9
  2. 1. KHCoder をインストールする • KHCoder とは? • テキスト型データの計量的な内容分析(計量 テキスト分析)もしくはテキストマイニング のためのフリーソフトウェアである。各種の

    検索を行えるほか、どんな言葉が多く出現し ていたのかを頻度表から見ることができる。 さらに多変量解析によって、一緒に出現する ことが多い言葉のグループや、同じ言葉を含 む文書のグループを見ることで、データ中に 含まれるコンセプトを探索できる。 • また一部の文書群に注目した場合に、その文 書群に特に多く出現する言葉をリストアップ することで、その文書群の特徴を探索できる。 あるいは分析者が指定した基準によって、文 書の分類を自動的に行うこともできる。 • 引用: https://ja.wikipedia.org/wiki/KH_Coder 2019/7/3 10
  3. 1. Khcoder をインストールする • Tips: Mac な場合 • かなりめんどくさい •

    Perl やR の個別パッケージの導 入が必要 • 有償版のインストールパッケー ジが提供されている. • https://khcoder.stores.jp/#!/it ems/536a53268a56108414000 1dd 2019/7/3 15
  4. 2. Dbpedia.org から SPARQL Endpoint 経 由でデータセットを取得する • 前回の講義で説明した Dbpedia.org

    の SPARQL Endpoint から, 東証一部, 東証二部, およびマザーズの企業名とその企業概要を 取得する • 日経NEEDS などに採録されたオフィシャルなデータではなくて、 Wikipedia で執筆された企業の「紹介文」 2019/7/3 16
  5. 2. Dbpedia.org から SPARQL Endpoint 経 由でデータセットを取得する • Jupyter Notebook

    で以下のように記述する (詳しくは前回配布 した notebook を参照のこと)
  6. 2. Dbpedia.org から SPARQL Endpoint 経 由でデータセットを取得する • 同様の作業を, 東証一部と東証二部で繰り返す

    #東証マザーズ上場企業の情報を取得する sparql2 = SPARQLWrapper(endpoint='http://ja.dbpedia.org/sparql', returnFormat='json') sparql2.setQuery(""" PREFIX dbpedia-owl: <http://dbpedia.org/ontology/> select distinct ?name ?abstract where { ?company <http://dbpedia.org/ontology/wikiPageWikiLink> <http://ja.dbpedia.org/resource/Category:東証マザーズ上場企業> . ?company rdfs:label ?name . ?company <http://dbpedia.org/ontology/abstract> ?abstract . } """) results2 = sparql2.query().convert()
  7. 5. 頻出語の取り出しを行う • “抽出語リストの形式” • 品詞別 • “記入する数値” • 出現回数(TF)

    • “出力するファイルの形式” • Excel (*.xlsx) を選択し, OK をクリックする 2019/7/3 32
  8. 6. ストップワードの設定 • Force ignore “使用しない語の指定” にス トップワードを指定する • 株式会社

    • 本社 • 会社 • 企業 • LTD. • CO., • CORPORATION • INC. • ょ • CO.,LTD. • HOLDINGS • THE • ELECTRIC • コーポレート など….
  9. 6.共起ネットワークを書く • 共起では, ある特定の タームで共に出てくる語 の確認ができる • 東証一部と東証二部とマ ザーズでは企業が取り組 んでいることが違う

    • マザーズはインターネッ ト系, 東証二部は自動車や 食品, 東証一部は持ち株な どのタームが出ている 2019/7/3 40
  10. 9. マッチングルールを作成する • 特定の語のグループを作成し, それらでグルーピングするこ とで特徴を抽出する • 今回の場合, 自動車産業, 電気

    産業, 銀行, ICT など産業分類 ごとにグルーピングする • 記述方法 *グループ名1 みかん or いちご or りんご *グループ名2 ごりら or らっこ or こんどる *グループ名3 るびー or びーどる
  11. 今日の実習; その1 (windows ユーザ向け) • Manaba にアップロードされ ている • (1)

    東証一部/二部/マザーズの 企業概要データ • (2)日本の経済/経営/社会/法学 者の概要データ • (3)日本のロック/ヒップホップ /フォークグループの概要デー タ を用いて, テキスト分析を行う • 語句の抽出 • 共起ネットワーク • 対応分析 • 多次元尺度構成法 • コーディングルールの設定 などを行い解析すること
  12. 2. Mecab+word2vecで解析し, wordcloud を書いてみる • Jupyter Notebook/Google Colaboratory • Mecab

    • Mecab-ipadic-neologd • Mecab-python-windows (Windows ユーザーの場合) 利用するもの • テキストデータ • 企業の概要データ • 日本の社会科学研究者リスト データセット
  13. MeCab とは • https://taku910.github.io/mec ab/ • 京都大学情報学研究科−日本 電信電話株式会社コミュニケー ション科学基礎研究所 共同研

    究ユニットプロジェクトを通じ て開発されたオープンソース 形態素解析エンジン • 言語, 辞書,コーパスに依存しな い汎用的な設計 • パラメータの推定に Conditional Random Fields (CRF) を用 いており, ChaSen が採用している 隠れマルコフ モデルに比べ性能が向上 MeCab ChaSen JUMAN KAKASI 解析モデル bi-gram マルコ フモデル 可変長マルコ フモデル bi-gram マル コフモデル 最長一致 コスト推定 コーパスから学 習 コーパスから 学習 人手 コストという 概念無し 学習モデル CRF (識別モデ ル) HMM (生成モ デル) 辞書引きア ルゴリズム Double Array Double Array パトリシア木 Hash? 解探索アル ゴリズム Viterbi Viterbi Viterbi 決定的? 連接表の実 装 2次元 Table オートマトン 2次元 Table? 連接表無し? 品詞の階層 無制限多階層品 詞 無制限多階層 品詞 2段階固定 品詞という概 念無し? 未知語処理 字種 (動作定義 を変更可能) 字種 (変更不 可能) 字種 (変更不 可能) 制約つき解 析 可能 2.4.0で可能 不可能 不可能 N-best解 可能 不可能 不可能 不可能
  14. Mecab をダウンロードする • Windows 10 環境の場合 • https://github.com/ikegami-yukino/mecab/releases • MeCab

    0.996 64bit version を導入する • UTF-8 版で辞書を作成すること • MacOS 環境の場合 • HomeBrew 環境を利用する • https://www.karelie.net/install-mecab-mac/
  15. Mecab-ipadic-NEOlogd とは • https://github.com/neologd/ mecab-ipadic- neologd/blob/master/READ ME.ja.md • 多数のWeb上の言語資源から 得た新語を追加することでカ

    スタマイズした MeCab 用の システム辞書 • Web上の文書の解析をする際 に活用できる • 収録データ(一部) • 人名(姓/名)エントリデータ • ニュース記事から抽出した新語 や未知語をエントリ化したデー タ • ネット上で流行した単語や慣用 句やハッシュタグをエントリ化 したデータ • Web からクロールした大量の 文書データ • 一般名詞/固有名詞の表記ゆれ 文字列とその原型の組のリスト をエントリ化したデータ
  16. 1. Wordcloud • Wordcloud関数を用いて, ワードクラウドを出力する • Font_path で利用する日本 語フォントを指定する(今回 は同じパスに配置)

    • Mask で, プロットするマス ク画像を指定する • Stopwords に, プロットしな いタームを指定したベクト ル stop_wordsを指定する • wordc.to_file でファイルの 保存名を指定する
  17. 2. Word2vec • テキストデータを解析し, 各 単語の意味をベクトル表現 化する • 単語間の近接性などを測定 することが可能に

    • Skip-Gram Model • 入力された単語を元に周辺語 を出力する, 入力層, 隠れ層, 出力層から構成されたニュー ラルネットワークを規定する 引用; https://www.randpy.tokyo/entry/word2vec_skip_gram_model
  18. 2. Word2Vec • 文を単語に分かち書きし, そ れぞれ入力層と出力層にイ ンプットしニューラルネッ トに学習させていく • 入力層から隠れ層への重み行列;

    W 隠れ層から出力層への重み行列; W’ をそれぞれ計算する • このとき、重み行列の各行のベクトルが, 単語の特徴を示すベクトルになる 引用; https://www.randpy.tokyo/entry/word2vec_skip_gram_model
  19. 2. Word2vec • 分かち書きしたファイルに 基づき, Word2vec モデル を生成する • このとき

    • Min_count; 単語の出現回数 • Window; 入力単語からの最 大距離 • Size; ベクトルの次元数 • Sg=1; skip-gram 形式での モデリング • iter; 学習の反復回数 • 最後にファイルを保存する
  20. Similarity Words の抽出(from 経営学者リスト) イノベーション マーケティング論 技術経営 コーポレート・ガバナンス 医療 0.92人的資源

    0.92MOT 0.98 神戸大学大学院経 営学研究科 0.93 静岡 0.91評価 0.92開発 0.92第一人者 0.92 地域 0.91ほか 0.91システム 0.92人 0.91 経営情報学 部 0.9勲 0.91知識 0.91組織論 0.91 県立大学 0.88技術 0.9マネジメント 0.9および 0.9 センター 0.88流通 0.9監事 0.88消費者 0.89 研究科 0.87分析 0.9課題 0.85にて 0.89 経営情報 0.87委員会 0.9Certified 0.85問題 0.88 研究所 0.84課題 0.9客員研究員 0.84受章 0.88 所長 0.83人 0.89技術 0.82期 0.87 長 0.82監事 0.89関係 0.82現代 0.87 准教授 0.81および 0.89プロジェクト 0.82勲 0.87 国際企業 0.8多摩大学 0.89 マーケティング 論 0.81アドバイザー 0.87 経済 0.8地域経済 0.88領域 0.81及び 0.87 研究員 0.79サービス 0.88ホスピタリティ 0.8社会学 0.86
  21. 3. Topic モデル • 文章における単語の出現確率 を推定するためのモデル • 出現する単語の種類と数が, トピック(カテゴリ) によって

    異なると仮定する • 各文章は複数のトピックによっ て構成されており, 各トピック の単語分布を合算された形で単 語が生成される https://qiita.com/icoxfog417/items/7c944cb29dd7cdf5e2b1
  22. 3. Topic モデル • 必要なパッケージ をインポートする • 元文章からターム を取り出し, キー

    ワードを抽出する • 今回のデータの場 合, 社会学者ひとり ひとりのタームが 抽出されたベクト ルが形成される 参考文献; https://paper.hatenadiary.jp/entry/2016/11/06/212149
  23. 3. Topic モデル • 出力結果 1602 ソーシャルワーク 2 1265 ソーシャル・キャピタル

    2 1524 タレント 2 1403 テレコム 2 725 テレビ 6 793 テーマ 5 559 デザイン 3 1451 デュルケーム 2 395 ドイツ 8 811 ニュース 3 1153 ネット 3 414 ネットワーク 10 310 ノンフィクション 3 33 バークレー 2 1467 フィールドワーク 3 1204 フェミニスト 2 1154 フェミニズム 3 1311 フェリス女学院大学 2 34 フランス 8 458 プロジェクト 3 415 ヘイトスピーチ 2 649 ペンネーム 2 1608 ホームレス 2 1057 ポスト 2 1058 ポストコロニアル 2 101 ポピュラー 3 679 マス 8 620 マスコミ 2 54 マスコミュニケーション 9 55 マスメディア 4 1126 マックス・ウェーバー 2 571 マックス・ヴェーバー 4
  24. まとめ; テキスト分析で出来そうなこと • 共起ネットワーク • 言葉同士の関係性を明示化し, 可視化する • WordCloud •

    みんなのなんとなくのイメージの可視化 • Word2vec • 言葉のベクトル化により, モデルへの組み込みが可能 • 被説明変数?説明変数? • Topic モデル • グルーピングの可視化 • 類似語の提案
  25. 今日の実習; その2 (Mac ユーザ向け) • Manaba にアップロードされ ている • (1)

    東証一部/二部/マザーズの 企業概要データ • (2)日本の経済/経営/社会/法学 者の概要データ • (3)日本のロック/ヒップホップ /フォークグループの概要デー タ を用いて, テキスト分析を行う • Wordcloud の作成 • Word2vec モデルの作成 • Topic モデルの作成 などを試行して, 結果を出力す ること
  26. 参考文献 • pythonでgensimを使ってトピックモデル(LDA)を行う • https://paper.hatenadiary.jp/entry/2016/11/06/212149 • 「OK word2vec ! "マジ卍"の意味を教えて」

    Pythonで word2vec実践してみた • https://www.randpy.tokyo/entry/python_word2vec • models.word2vec – Word2vec embeddings • https://radimrehurek.com/gensim/models/word2vec.html • 15分でできる日本語Word2Vec • https://qiita.com/makaishi2/items/63b7986f6da93dc55edd
  27. 参考文献(2) • Pythonで文字列を分割(区切り文字、改行、正規表現、文字 数) • https://note.nkmk.me/python-split-rsplit-splitlines-re/ • WindowsでNEologd辞書を比較的簡単に入れる方法 • https://qiita.com/zincjp/items/c61c441426b9482b5a48

    • Windows 10 64bit で python + Mecab • https://qiita.com/kuro_hane/items/64e39d5deeb3f876b421 • Windows10(64bit)/Python3.6でmecab-python環境構築 • http://blog.livedoor.jp/oyajieng_memo/archives/1777479.html
  28. 参考文献(3) • MeCab: Yet Another Part-of-Speech and Morphological Analyzer •

    https://taku910.github.io/mecab • mecab-ipadic-NEologd : Neologism dictionary for MeCab • https://github.com/neologd/mecab-ipadic-neologd • Word2Vecを用いた類義語の抽出が上手く行ったので、分析を まとめてみた • https://qiita.com/To_Murakami/items/cc225e7c9cd9c0ab641e • 自然言語処理による文書分類の基礎の基礎、トピックモデルを 学ぶ • https://qiita.com/icoxfog417/items/7c944cb29dd7cdf5e2b1
  29. レポート(3回目)の内容 • 概要 • テーマ; とっても細かくやってみる「企業研究」 • 日経NEEDS からデータセットを入手し, 特定の産業,

    企業グループにおける財務パ フォーマンスについて比較分析を行い, レポートにまとめる. • レポートでは • (1) とりあげた産業/企業グループの特徴の抽出 • (2) 売上高, 資本金, ROE, ROA など主な財務パフォーマンスのデータおよびその比較 を行った上で, 「もしも自分が就職するのなら」どの企業を選択するか明記すること • 提出期間: 2019/7/1 15:00:00 - 2019/7/8 10:45:00 (JST) • 提出方法: Manaba のレポート提出ページに, ipynbまたはPDF 形式 で提出すること • ※. Word または LaTeX で作成した場合, PDF でアウトプットすること
  30. 日本標準産業分類 • A. 農業,林業 • B. 漁業 • C. 鉱業,採石業,砂利採取業

    • D. 建設業 • E. 製造業 • F. 電気・ガス・熱供給・水道業 • G. 情報通信業 • H. 運輸業,郵便業 • I. 卸売業,小売業 • J. 金融業,保険業 • K. 不動産業,物品賃貸業 • L. 学術研究,専門・技術サービス業 • M. 宿泊業,飲食サービス業 • N. 生活関連サービス業,娯楽業 • O. 教育,学習支援業 • P. 医療,福祉 • Q. 複合サービス事業 • R. サービス業(他に分類されないもの) • S. 公務(他に分類されるものを除く) • T. 分類不能の産業 http://www.soumu.go.jp/toukei_toukatsu/index/seido/ sangyo/02toukatsu01_03000022.html
  31. 日本標準産業分類から, ローソンが属す る産業群を抽出する comp_name read comp_size_l aw comp_size_ cap comp_size_emp

    jsic_code jsic_l jsic_m jsic_s アスモ あすも 大企業 10億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 アペックス あぺっくす 大企業 5000万円以 上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 清水製薬 しみずせいやく jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 えがお えがお 中小企業 1億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 柿安本店 かきやすほんてん 大企業 10億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 サンクス さんくす jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 シー・ヴイ・エス・ベイエリア しーゔいえすべいえりあ 大企業 10億円以上 100~299人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ショクブン しょくぶん 大企業 10億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 スリーエフ すりーえふ 大企業 10億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 TAANE たあね jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 日本レストランエンタプライズ にっぽんれすとらんえんたぷらい ず 大企業 1億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ファンデリー ふぁんでりー 中小企業 1億円以上 30~99人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 プレナス ぷれなす 大企業 10億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ポプラ ぽぷら 大企業 10億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 マッシュ・テック まっしゅてっく 小規模企業 者 1000万円以 上 5人未満 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ミニストップ みにすとっぷ 大企業 10億円以上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 メルカード東京農大 めるかーどとうきょうのうだい 中小企業 1000万円以 上 5~29人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ユニー・ファミリーマートホール ディングス ゆにーふぁみりーまーとほーる でぃんぐす 大企業 10億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ファミリーマート ふぁみりーまーと 大企業 10億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 ローソン ろーそん 大企業 10億円以上 1,000~4,999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 わかさ生活 わかさせいかつ 中小企業 1000万円以 上 300~999人 jsic589 卸売業,小売業 飲食料品小売業 その他の飲食料品小売業 出典: NISTEP 企業名辞書
  32. 1. これらを踏まえ, 本レポートでの市場 画定 • 特定の企業をひとつ取り上げてください • 当該企業と同じ産業に属するであろう、複数の企業を抽出する。 このとき、レポートでは抽出方法について明らかにすること。 抽出方法については

    (1) 日本標準産業分類に基づく抽出, (2) 業 界情報 (例. https://gyokai-search.com/2nd-genre.htm) など に基づく抽出, (3) その他の方法に基づく抽出 など幾つかの手 法が考えうるが, 選択した手法について明記すること
  33. 2. データベースの選択とデータの抽出 • データベースの選択 • 企業データベース • 日経NEEDS etc… •

    論文データベース • Google Scholar, Web of Science etc… • 特許データベース • 特許庁データベース, IIP パテントデータベース etc… • 1. で指定した企業群について, 解析にあたり必要なデータを取 得すること. これら以外のデータベースを利用しても構わない
  34. 3. & 4. データの解析およびレポートの作成 • 2. で取得したデータに関して, 主に以下の分析を行い報告する こと •

    産業 (あるいは業界) 構造の特性の抽出 • 主な企業の売上高, 資本金および収益率など, 財務パラメータの比較分 析 • 統計分析 (基本統計量の抽出, 散布図の作成, 回帰分析 etc…) • レポートの最後に、「もしも自分が就職するのなら」どの企業 を選択するのか明記してください • オチとして、「解析の結果こういう理由から、どうもいい企業がない ので自分でスタートアップを作ります」でもOKです。
  35. 成績評価(1) • 平常レポート (40パーセント; 必須) • 講義計画に示したように、複数の回で学生にはレポートを課します。 レポートは Word/PowerPoint形式のメールあるいは, github

    経由で の提出が求められます(どの方法を採用するかは、初回の講義で決定し ます)。 • レポートには、(A.) 利用したデータセットとその内容, (B.) 分析の問 い, (C.) 分析手法, (D.) 分析結果 を明記する必要があります。ページ 数や文字数は問いませんが, これらの内容が含まれており, 講義中にア ナウンスする評価手法を満たす場合, 高い得点を得ることが出来ます。 • 平常点 (10パーセント) • 本講義は実習が多く含まれており, また取り扱うデータセットや内容も 多彩です。そのため、受講者同士が協力する必要があります。こうし た受講者の態度を評価するために、平常点を設けます。
  36. 成績評価(2) • 最終レポート (40パーセント; 必須) • 講義の最終回では最終レポートの報告会を行います。受講者は3名から4名か ら構成されるグループで、最終レポートの報告を行う必要があります(人数は 受講者の人数により変更される可能性があります)。最終レポートでは、プレ ゼンテーションの方法を学生は自由に選ぶことが出来ます。PowerPoint

    以 外にも、Prezi などのアクティブプレゼンテーションツールや、他のプレゼ ンテーション手法を用いることが出来ます(プレゼンテーションツールについ ては、必要であれば講義内で説明する機会を設けます)。最終レポートでは、 以下の点について評価を行います。 (A.) グループ内の役割分担 (B.) データセットのユニークさおよび、それが適切に処理されているか (C.) 分析手法のユニークさおよび、それが適切に解析されているか (D.) プレゼンテーションのユニークさ (E.) 質疑応答にうまくリプライすることが出来ているか • 最終レポートの360°グループ評価 (10パーセント) • 3. の最終レポートについて、グループの自己評価および他のグループからの 評価を行います。3. で挙げた評価ポイントに基づき、グループメンバーおよ び他のグループは評価を行います。
  37. 13. まとめと最終報告レポート • ディスカッション • 1組5-6名のグループを作り, そのメンバーで最終レポートを作成して いただきます。 • データ分析組,

    データ調達組, プレゼンテーション作成組, プレゼンテーション担 当など役割分担はお任せします。 • 講義の最終回で, 発表時間10分, 質疑応答5分でプレゼンテーションを します。
  38. 13. まとめと最終報告レポート • テーマ • 「◦◦のための実践的データ分析」 • 卒論や修論や博論の作成の入り口になるような、データの調達とその データの解析を, 講義で取り上げたデータセットおよび分析手法で実施

    する • 分析単位はマクロ (国レベル) でもメソ (企業/産業レベル) でもミクロ (個人レベル) でも問いません • 利用できるデータセット • 特に制限なし • 利用できるツール • Tableau, Excel, SQL, Jupyternotebook (Python) など, 特に制限なし
  39. 13. まとめと最終報告レポート • 評価方法 • グループ内での自己評価 • グループ外からの評価 アンケートシステムをManaba or

    Google Docs で用意します。 • 評価基準 • (A.) グループ内の役割分担 (B.) データセットのユニークさおよび、それが適切に処理されているか (C.) 分析手法のユニークさおよび、それが適切に解析されているか (D.) プレゼンテーションのユニークさ (E.) 質疑応答にうまくリプライすることが出来ているか • 納品物 • プレゼンテーションに利用したファイル (Word か Powerpoint か Prezi か etc…) を, Manaba にアップロードすること