6/91 胡扯 (double- 旁白 ) ! (double- 愛因斯坦對此解釋極度厭惡 ) Does the moon cease to exit when I don’t look at it? (double- 我不看月亮的時候它就不存在嗎? ) ~ Albert Einstein (double- 阿爾伯特 · 愛因斯坦 ) ~ Ref: https://en.wikipedia.org/wiki/Albert_Einstein Ref: 【 BBC 纪录片】量子力学揭秘】量子力学揭秘 量子力学揭秘 01 【量子纠缠与玻尔 - 爱因斯坦之争】量子力学揭秘
10/91 Does the moon cease to exit when I don’t look at it? (double- 我不看月亮的時候它就不存在嗎? ) (double- 月亮確實在觀測前不存在 ) ~ Albert Einstein (double- 阿爾伯特 · 愛因斯坦 ) ~ Ref: https://en.wikipedia.org/wiki/Albert_Einstein Ref: 【 BBC 纪录片】量子力学揭秘】量子力学揭秘 量子力学揭秘 01 【量子纠缠与玻尔 - 爱因斯坦之争】量子力学揭秘
11/91 Anyone who is not shocked by quantum theory has not understood it. (double- 如果誰不對量子理論感到困惑,他就沒有理解它 ) ~ Niels Bohr (double- 尼爾斯 · 波耳 ) ~ Ref: https://en.wikipedia.org/wiki/Niels_Bohr
12/91 I think I can safely say that nobody understands quantum mechanics. (double- 我想我可以很確定的說,沒有人理解量子力學 ) ~ Richard Feynman (double- 理察 · 費曼 ) ~ Ref: https://en.wikipedia.org/wiki/Richard_Feynman
66/91 現代密碼學 (double-Modern Cryptography) Ref: https://crypto.stackexchange.com/questions/9480/assuming-a-1024qb-quantum-computer-how-long-to-brute-force-1024bit-rsa-256bit Ref: http://advances.sciencemag.org/content/3/2/e1601540.full 破解時間的換算比較複雜,這依賴量子電腦設計的處理能力。 引言, On the basis of the same scheme, we can give quantitative estimates on the system size and processing time for a machine that solves a relevant, hard problem, such as the Shor factoring of a 2048-bit number. For the calculations, we assume a single-qubit gate time of 2.5 μs, two-s, two-qubit gate time of 10 μs, two-s, ion separation and shuttling time of 15 μs, two-s each, static magnetic field gradient ramp-up and ramp-down time of 5 μs, two-s each, and a measurement time of 25 μs, two-s, resulting in a total error correction cycle time of 235 μs, two-s. On the basis of these numbers, performing a 2048-bit number Shor factorization will take on the order of 110 days and require a system size of 2 × 109 trapped ions. Shor factoring of a 1024-bit number will take on the order of 14 days. ... Assuming that it will also be possible to reduce the error rate of each quantum operation below 0.01%, it would be possible to perform the 2048-bit number factorization in approximately 10 days, requiring on the order of 5 × 108 ions.
73/91 量子霸權 (double-Quantum Supremacy) Google 於 2018-03-05 在其 Google Research Blog 發表一篇 《 A Preview of Bristlecone, Google’s New Quantum Processor 》。 指出, Although no one has achieved this goal yet, we calculate quantum supremacy can be comfortably demonstrated with 49 qubits, a circuit depth exceeding 40, and a two-qubit error below 0.5%. 儘管還沒有人達到這個目標 (double- 註:量子霸權 ) ,但我們認為量子霸權可以用 49 個量子位元,一個電路深度 超過 40 ,兩個量子位元錯誤率低於 0.5 %合理的證明出來。 Ref: https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
74/91 量子霸權 (double-Quantum Supremacy) Google 同篇報導也指出, We are looking to achieve similar performance to the best error rates of the 9-qubit device, but now across all 72 qubits of Bristlecone. We believe Bristlecone would then be a compelling proof-of-principle for building larger scale quantum computers. Operating a device such as Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself. Getting this right requires careful systems engineering over several iterations. (double- 指出目前 72 個量子位元的 Bristlecone 的錯誤率不佳,還無法達到 9 個量子位元設備時的最佳錯誤率。 而這涉及軟體、控制電腦設備乃至處理器本身的各方協調。 ) Ref: https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
75/91 量子霸權 (double-Quantum Supremacy) 2018-03-28 , Microsoft 在《 Nature 》期刊登出拓撲量子計算機( Topological Quantum Computer )的突破。的突破。 While you may have heard of machines with as many as Google’s 72 qubits, those are imprecise. The tiniest vibrations or energy from the outside environment could lead to an error in the calculation. But Microsoft’s ‘topological’ quantum computers might drastically reduce that noise. (double- 雖然 Google 有報導過 72 個量子位元的晶片,但這些都是不精確的的量子位元。來自外部環境的微小震 動或能量都可能導致計算錯誤。但微軟的 「拓撲」 量子計算機可能能夠大大降低噪音。 ) Ref: https://gizmodo.com/how-will-microsofts-wild-electron-splitting-topological-1824142429
76/91 量子霸權 (double-Quantum Supremacy) “One of our qubits will be as powerful as 1,000 or 10,000 of the noisier qubits,” Microsoft’s Julie Love, director of quantum computing business development. (double- 微軟量子計算業務發展總監 Julie Love 幾週前接受採訪時說:「我們的一個量子位元將會有 1000 個、 甚至 10000 個嘈雜的量子位元那般強大。」 ) Ref: https://gizmodo.com/how-will-microsofts-wild-electron-splitting-topological-1824142429