Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Grammatical Error Correction with Neural Reinfo...
Search
youichiro
June 05, 2018
Technology
0
130
Grammatical Error Correction with Neural Reinforcement Learning
長岡技術科学大学
自然言語処理研究室
文献紹介(2018-06-06)
youichiro
June 05, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
110
Multi-Agent Dual Learning
youichiro
1
190
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
130
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
150
勉強勉強会
youichiro
0
92
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
200
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
180
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
210
Other Decks in Technology
See All in Technology
ESXi のAIOps だ!2025冬
unnowataru
0
470
技術選定、下から見るか?横から見るか?
masakiokuda
0
170
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
製造業から学んだ「本質を守り現場に合わせるアジャイル実践」
kamitokusari
0
220
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
290
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
200
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
500
国井さんにPurview の話を聞く会
sophiakunii
1
300
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
120
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
370
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
0
1.1k
AIと融ける人間の冒険
pujisi
0
110
Featured
See All Featured
Between Models and Reality
mayunak
1
150
Building Adaptive Systems
keathley
44
2.9k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
880
RailsConf 2023
tenderlove
30
1.3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Bash Introduction
62gerente
615
210k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
340
Mind Mapping
helmedeiros
PRO
0
45
Faster Mobile Websites
deanohume
310
31k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
97
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
260
Unsuck your backbone
ammeep
671
58k
Transcript
Grammatical Error Correction with Neural Reinforcement Learning Keisuke Sakaguchi, Matta
Post and Benjamin Van Durme Proceedings of the 8th International Joint Conference on Natural Language Processing, pages 366-372, 2017 ⽂献紹介(2018-06-06) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
Abstract l 強化学習を⽤いたニューラルエンコーダ・デコーダモデル l ⽂レベルの最適化が可能 l ⾃動評価・⼈⼿評価において⾼い性能を⽰す 2
Introduction l GEC(Grammatical Error Correction)タスクの動向 Ø token-level → phrase-level →
sentence-level l sentence-level: 流暢性を考慮 Ø ⽂脈による単語選択、コロケーション、単語の並び順 など l 流暢性を考慮したモデル:PBMT, neural encoder- decoder models 3
Introduction l encode-decoder の最適化に maximum likelihood estimation(MLE)が⽤いられてきた l MLEの⽋点 Ø
ある時点で間違った単語を予測すると、それ以降の単語 にも影響を与えてしまう 4
Maximum Likelihood Estimation 5 l 各時刻で単語の予測を最適化する l ⽂全体の評価はしない " #
$ % " # $ % " # $ encoder decoder : Y: encoder-decoder model objective
Neural Reinforcement Leaning l 報酬を最⼤化するようにNRLのパラメータを学習→強化学習 6 (ŷ| ; ): 予測単語列の確率
(ŷ, ): 正解(y)に対する予測(ŷ)の報酬 objective
Reward in GEC: GLEU l 原⽂(S), 出⼒(H), 正解(R)からN-gram適合率を計算する l N(A,
B): AとBのN-gramの重複数 l BP(brevity penalty): 出⼒の⻑さ(h)と正解の⻑さ(r)で決まる 7
Experiments データセット 8 モデル
Results l ランダムに200⽂を選択して2⼈のワーカーが評価 l TrueSkill algorithm(Herbrich et al., 2006; Sakaguchi
et al., 2014)を 使って評価スコアを計算 l ⼈⼿評価とGLEUに相関あり 9
Results 10
Conclusions l 強化学習を⽤いたニューラルエンコーダデコーダモデル l MLEの問題である単語レベルの評価に対して、GLEUを⽤い て⽂レベルの最適化に取り組んだ l ⼈⼿評価・⾃動評価において提案⼿法が優れた性能を⽰し た 11
Extra Ø a 12